

Perth Academy

Mathematics Department

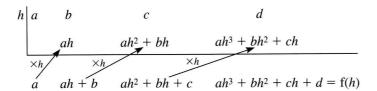
Higher

Key Points

Polynomials

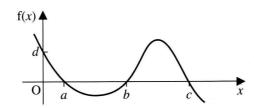
Polynomials

- 1 A root of a polynomial function, f(x), is a value of x for which f(x) = 0.
- When $ax^3 + bx^2 + cx + d$ is divided by x h, the quotient and remainder can be found by synthetic division:



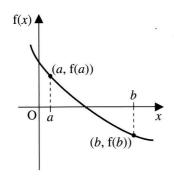
The quotient is $ax^2 + (ah + b)x + (ah^2 + bh + c)$ and the remainder is $ah^3 + bh^2 + ch + d$.

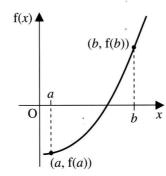
- The remainder theorem: If a polynomial f(x) is divided by (x h) the remainder is f(h).
- The factor theorem: If f(h) = 0 then x - h is a factor of f(x). Conversely, if (x - h) is a factor of f(x) then f(h) = 0.
- 5 The equation of a polynomial may be established from its graph:



f(x) = k(x - a)(x - b)(x - c) is the general equation for the family of curves. k can be found by substituting (0, d) in f(x).

A root of a polynomial lies between x = a and x = b if f(a) > 0 and f(b) < 0 or if f(a) < 0 and f(b) > 0.





Show that (x - 5) is a factor of $f(x) = 2x^3 + x^2 - 50x - 25$ and express f(x) in fully factorised form.

Solution

Since
$$f(5) = 0$$
, $(x - 5)$ is a factor of $2x^3 + x^2 - 50x - 25$
Hence $f(x) = (x - 5)(2x^2 + 11x + 5)$

Hence
$$f(x) = (x - 5)(2x^2 + 11x + 5)$$

= $(x - 5)(2x + 1)(x + 5)$

Example 2

Express $(8x^4 + 2x^2 - 4x - 3) \div (2x - 1)$ in the form (2x - 1)Q(x) + R, where Q(x) is the quotient and R is the remainder.

Solution

$$2x - 1 = 0$$
 has root $x = \frac{1}{2}$

Hence

Hence
$$f(x) = (x - \frac{1}{2})(8x^3 + 4x^2 + 4x - 2) - 4$$

= $(2x - 1)(4x^3 + 2x^2 + 2x - 1) - 4$

Example 3

Find the roots of $x^4 + x^3 - 9x^2 - 7x + 14 = 0$.

Solution

To find the roots consider factors of 14, i.e. ± 1 , ± 2 , ± 7

$$f(x) = (x - 1)(x^3 + 2x^2 - 7x - 14)$$

To find the factors of $(x^3 + 2x^2 - 7x - 14)$:

$$f(x) = (x - 1)(x + 2)(x^2 - 7)$$

Hence,
$$x - 1 = 0$$
 or $x + 2 = 0$ or $x^2 - 7 = 0$
 $x = 1$ $x = -2$ $x = \pm \sqrt{7}$

The roots are $-\sqrt{7}$, -2, 1, $\sqrt{7}$.

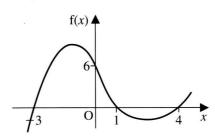
Given that (x + 1) and (x - 3) are factors of $f(x) = 2x^3 - 5x^2 + px + q$, find p and q.

Solution

Solving simultaneous equations q - p = 7 and q + 3p = -9 gives p = -4 and q = 3.

Example 5

From the graph find an expression for f(x).



Solution

The graph has zeros at x = -3, x = 1 and x = 4 hence f(x) = k(x + 3)(x - 1)(x - 4)

From the graph,
$$f(0) = 6$$

so $k(0+3)(0-1)(0-4) = 6$
 $12k = 6$
 $k = \frac{1}{2}$

Hence
$$f(x) = \frac{1}{2}(x+3)(x-1)(x-4)$$

= $\frac{1}{2}x^3 - x^2 + \frac{11x}{2} + 6$

Sketch the graph of $y = 3x^3 - 9x + 6$.

Solution

y-intercept

When x = 0, y = 6 so the y-intercept is at (0, 6).

x-intercept

Solve
$$3x^3 - 9x + 6 = 0$$

$$3(x^3 - 3x + 2) = 0$$

$$3(x-1)(x^2+x-2)=0$$

$$3(x-1)(x+2)(x-1) = 0$$

$$x - 1 = 0$$
 or $x + 2 = 0$

$$x = 1$$
 or $x = -2$

The graph cuts the x-axis at (1, 0) and (-2, 0).

Stationary points

$$y = 3x^3 - 9x + 6$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 9x^2 - 9$$

For stationary points $\frac{dy}{dx} = 0$

$$9x^2 - 9 = 0$$

$$9(x+1)(x-1) = 0$$

$$x = -1$$
 or $x = 1$

When
$$x = -1$$
, $y = 12$

When
$$x = 1$$
, $y = 0$

х	-1-	-1	-1+
$\frac{\mathrm{d}y}{\mathrm{d}x}$	+	0	_
slope	/	1	

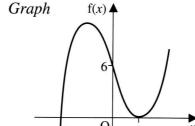
x	1-	1	1+
$\frac{\mathrm{d}y}{\mathrm{d}x}$	_	0	+
slope			/

maximum turning point (-1, 12) minimum turning point (1, 0)

Large positive and negative x

As
$$x \to -\infty$$
, $3x^3 - 9x + 6 \to x^3 \to -\infty$

As
$$x \to \infty$$
, $3x^3 - 9x + 6 \to x^3 \to \infty$



For the function $f(x) = x^3 - x^2 + 2x + 1$ show there is a real root between 0 and -1. Find this root to two decimal places.

Solution

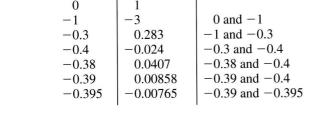
f(0) = 1, which is positive so the graph is above the x-axis.

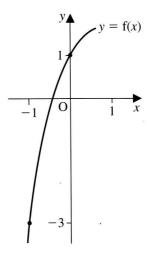
f(-1) = -3, which is negative so the graph is below the *x*-axis.

Hence the graph crosses the x-axis between 0 and -1.

Evaluate f(x) for values between 0 and -1.

X	f(x)	Root lies between
0 -1 -0.3 -0.4 -0.38 -0.39	1 -3 0.283 -0.024 0.0407 0.00858	0 and -1 -1 and -0.3 -0.3 and -0.4 -0.38 and -0.4 -0.39 and -0.4
-0.395	-0.00765	-0.39 and -0.395





The root is -0.39 to two decimal places.