

Perth Academy

Mathematics Department

Higher

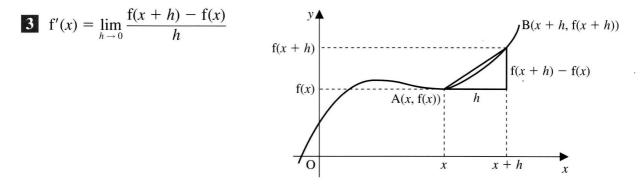
Key Points

Differentiation

Differentiation

1 The rate of change of a function f(x) can be written as f'(x) and is called the **derived function**.

- **2** The derivative of a function represents:
 - the rate of change of a function
 - the gradient of the tangent to the function.



4 If $f(x) = ax^n$ then $f'(x) = anx^{n-1}$, where *a* is a constant and *n* is a rational number.

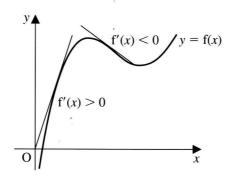
5 If f(x) = g(x) + h(x) then f'(x) = g'(x) + h'(x)

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}'(x)$

7 Since a tangent is a straight line, its equation may be given by y - b = m(x - a). Hence, to find the equation of the tangent at any point on a curve we need to determine:

- the coordinates (a, b) of the point
- the gradient, *m*, at that point by finding $\frac{dy}{dx}$
- 8 For any curve:

If f'(x) > 0 in a given interval then f(x) is strictly increasing in that interval. If f'(x) < 0 in a given interval then f(x) is strictly decreasing in that interval.



Example 1

Find f'(x) when $f(x) = 4x^3 + \sqrt{x} + 2$.

Solution

$$f(x) = 4x^{3} + \sqrt{x} + 2$$

= 4x³ + x^{1/2} + 2
f'(x) = 12x² + $\frac{1}{2}x^{-\frac{1}{2}}$
= 12x² + $\frac{1}{2\sqrt{x}}$

Example 2

Given that
$$y = \frac{x^5 + 2}{x^2}$$
, find $\frac{dy}{dx}$.

Solution

$$y = \frac{x^{5} + 2}{x^{2}}$$

= $\frac{x^{5}}{x^{2}} + \frac{2}{x^{2}}$
= $x^{3} + 2x^{-2}$
 $\frac{dy}{dx} = 3x^{2} + (-4)x^{-3}$
= $3x^{2} - \frac{4}{x^{3}}$

Example 3

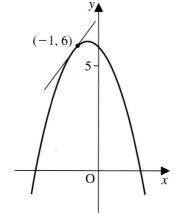
The diagram shows the graph of y = (2 - x)(x + 3). (a) Find the gradient of the tangent at (-1, 6).

(b) Hence find its equation.

Solution

(a)
$$y = (2 - x)(x + 3) = 6 - x - x^{2}$$

 $\frac{dy}{dx} = -1 - 2x$
When $x = -1$ $\frac{dy}{dx} = -1 - 2 \times (-1)$
 $= 1$
Hence gradient of tangent = 1
(b) $y - b = m(x - a)$
 $y - 6 = 1(x - (-1))$
 $y = x + 7$



Example 4

Find the rate of change of $f(x) = \frac{x^4 - 1}{x}$ at x = 2.

Solution

$$f(x) = \frac{x^4 - 1}{x} = \frac{x^4}{x} - \frac{1}{x} = x^3 - x^{-1}$$

$$f'(x) = 3x^2 - (-1)x^{-2}$$

$$= 3x^2 + \frac{1}{x^2}$$

$$f'(2) = 3 \times 2^2 + \frac{1}{2^2}$$

$$= 12\frac{1}{4}$$

Example 5

For the curve with equation $y = 2x^3 - 9x^2 - 24x + 6$ find the coordinates of the stationary points and determine their nature.

Solution

 $y = 2x^{3} - 9x^{2} - 24x + 6$ $\frac{dy}{dx} = 6x^{2} - 18x - 24$ Stationary points occur when $\frac{dy}{dx} = 0$ $6x^{2} - 18x - 24 = 0$ 6(x + 1)(x - 4) = 0 $x + 1 = 0 \quad x - 4 = 0$ $x = -1 \quad x = 4$ When x = -1, y = 19 and when x = 4, y = -106. The stationary points are (-1, 19) and (4, -106). $\frac{dy}{dx} = -1$

Consider the gradient, $\frac{dy}{dx}$, in the neighbourhood of each stationary point.

x	-1-	-1	-1+	X	4-	4	4+
$\frac{\mathrm{d}y}{\mathrm{d}x}$	+	0	-	$\frac{\mathrm{d}y}{\mathrm{d}x}$	-	0	+
slope	/			slope	/		/

There is a maximum turning point at (-1, 19) and a minimum turning point at (4, -106).

Example 6

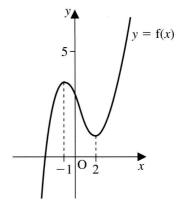
The graph shows y = f(x) for $-2 \le x \le 4$ where f(x) is a cubic function. Sketch the graph of y = f'(x) for the same domain.

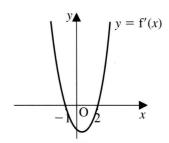
Solution

From the graph of y = f(x) we can determine the following:

	<i>x</i> < -1	x = -1	-1 < x < 2	x = 2	x > 2
f'(<i>x</i>)	+ve	zero	-ve	zero	+ve

Hence the graph of y = f'(x) is as shown opposite.





Example 7

Sarah's drinking beaker is in the shape of a cylinder with a hemispherical lid and a circular flat base. The radius of the cylinder is $r \, \text{cm}$ and the height is $h \, \text{cm}$. The volume of the cylinder is $400 \, \text{cm}^3$.

(a) Show that the surface area of plastic, A(r), needed to make

the beaker is given by $A(r) = 3\pi r^2 + \frac{800}{r}$.

Note: The curved surface area of a hemisphere of radius *r* is $2\pi r^2$.

(b) Find the value of *r* which ensures that the surface area of plastic is minimised. [Higher]

Solution

(a) Area of base $= \pi r^2$ Area of hemisphere $= 2\pi r^2$ To find *h*: Area of side $= 2\pi rh$ Volume of cylinder $= \pi r^2 h = 400$

Total area = $\pi r^2 + 2\pi r^2 + 2\pi rh$

$$A(r) = \pi r^{2} + 2\pi r^{2} + 2\pi r \times \frac{400}{\pi r^{2}}$$
$$= 3\pi r^{2} + \frac{800}{r}$$

(b) For a minimum to occur, A'(r) = 0

$$A(r) = 3\pi r^{2} + \frac{800}{r}$$

= $3\pi r^{2} + 800r^{-1}$
 $A'(r) = 6\pi r - 800r^{-2}$
= $6\pi r - \frac{800}{r^{2}}$
 $-\frac{800}{r^{2}} = 0$
 $-800 = 0$

$$r^3 = \frac{800}{6\pi}$$

 $6\pi r$

 $6\pi r^3$

r = 3.5 (to 1 decimal place)

r	3.5-	3.5	3.5+	
A'(r)	-	0	+	
slope	/		/	

Hence a minimum occurs when r = 3.5 cm.

