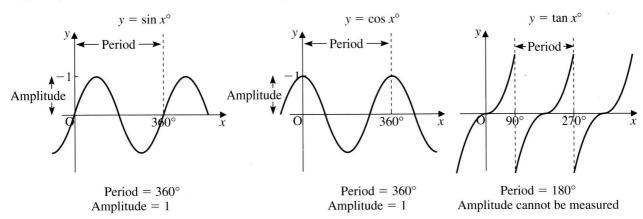
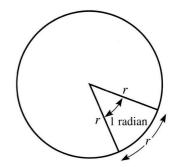


# Perth Academy

# Mathematics Department


Higher

**Key Points** 


Graphs and Equations

## Graphs and Equations

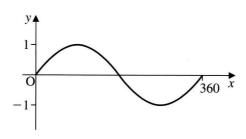
1 A graph which consists of a repeated pattern is described as **periodic**.



- The horizontal extent of the basic pattern is called the **period**. Half of the vertical extent is called the **amplitude**.
- For  $y = a \sin bx^{\circ}$  and  $y = a \cos bx^{\circ}$ Amplitude = a and period =  $\frac{360^{\circ}}{b}$ For  $y = a \tan bx^{\circ}$ Amplitude cannot be measured and period =  $\frac{180^{\circ}}{b}$



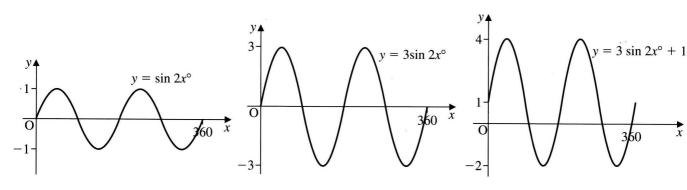
- The angle subtended at the centre of a circle by an arc equal in length to the radius is **1 radian**.
- $5 \cdot \pi \text{ radians} = 180^{\circ}$


| 6 |     | 0°  | 30°                  | 45°                  | 60°                  | 90°             |
|---|-----|-----|----------------------|----------------------|----------------------|-----------------|
|   |     | 0   | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ |
|   | sin | 0   | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1               |
|   | cos | . 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | 0               |
|   | tan | 0   | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | undefined       |

### **Example 1**

Sketch the graph of the function  $y = 3\sin 2x^{\circ} + 1$ .

#### **Solution**


Start with the graph of  $y = \sin x^{\circ}$ .

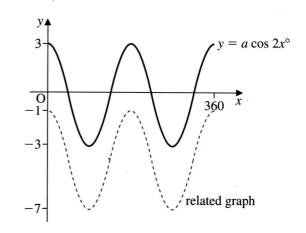


Squeeze horizontally by a factor of  $\frac{1}{2}$ 

Stretch vertically by a factor of 3

Slide vertically 1 unit upwards




## **Example 2**

The diagram shows part of the graph  $y = a \cos 2x^{\circ}$ .

- (a) State the value of a.
- (b) Write the equation of the related graph.

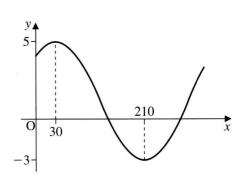
#### **Solution**

- (a) The amplitude is 3, so a = 3.
- (b) Since the related graph is 4 units below  $y = 3 \cos 2x^{\circ}$ , its equation is  $y = 3 \cos 2x^{\circ} 4$ .



## Example 3

The diagram shows part of the graph of  $y = a \cos (x - b)^{\circ} + c$ . Find the values of a, b and c.


#### **Solution**

Period = 
$$360^{\circ}$$
  
Amplitude =  $\frac{5 - (-3)}{2} = 4$ 

Horizontal shift = 30 to the right

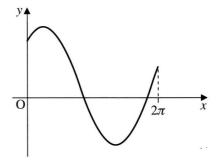
Vertical shift = 1 up

The graph has equation  $y = 4 \cos (x - 30)^{\circ} + 1$ .



## **Example 4**

Find the coordinates of the maximum turning point of the graph of  $y = 3 \sin \left(x + \frac{\pi}{3}\right)$  for  $0 \le x \le 2\pi$ .


#### **Solution**

Since 
$$-1 \le \sin x \le 1$$
 then  $-3 \le 3 \sin \left(x + \frac{\pi}{3}\right) \le 3$ 

The maximum value of the function is 3, when

$$3 \sin\left(x + \frac{\pi}{3}\right) = 3$$
$$\sin\left(x + \frac{\pi}{3}\right) = 1$$
$$x + \frac{\pi}{3} = \frac{\pi}{2}$$
$$x = \frac{\pi}{6}$$

The maximum turning point is at  $(\frac{\pi}{6}, 3)$ .



## **Example 5**

Solve 
$$4\cos^2 x - 1 = 0$$
 for  $0 \le x \le 2\pi$ .

#### **Solution**

$$4\cos^2 x - 1 = 0 
4\cos^2 x = 1$$

$$\cos^2 x = \frac{1}{4} \qquad .$$

$$\cos x = \pm \frac{1}{2}$$

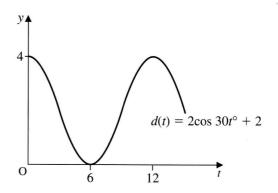
When 
$$\cos x = \frac{1}{2}$$
,  $x = \frac{\pi}{3}$  or  $\frac{5\pi}{3}$ 

When 
$$\cos x = -\frac{1}{2}$$
,  $x = \frac{2\pi}{3}$  or  $\frac{4\pi}{3}$ 

$$x = \frac{\pi}{3}$$
 or  $\frac{2\pi}{3}$  or  $\frac{4\pi}{3}$  or  $\frac{5\pi}{3}$ .

### **Example 6**

The graph shows the depth, d metres, of water in a harbour t hours after midnight. The depth of water can be modelled by the function  $d(t) = 2 \cos 30t^{\circ} + 2$ . A boat anchored in the harbour has a draught of 3 metres. Between which hours will it be grounded?


#### **Solution**

t = 2 or 10

The boat will float if d(t) > 3

so 
$$2 \cos 30t^{\circ} + 2 > 3$$
  
 $\cos 30t^{\circ} > \frac{1}{2}$   
When  $\cos 30t^{\circ} = \frac{1}{2}$  then  $30t = 60$  or  $300$ 

The boat will be grounded between 0200 hours and 1000 hours.

