

Perth Academy

Mathematics Department

Higher

Key Points

Sets and Functions

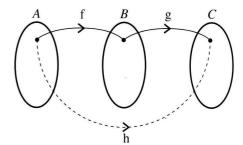
Sets and Functions

A **function** or mapping from a set *A* to a set *B* is a rule that relates each element in set *A* to one and only one element in set *B*.

The set of elements in set A is called the **domain**.

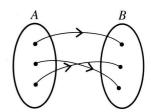
The set of images in set B is called the **range**.

A composite function can be written in the form h(x) = g(f(x)) and is read as 'g of f of x'.

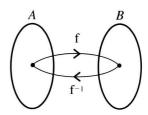


3 In general $f(g(x)) \neq g(f(x))$

A function in which the elements of two sets are paired so that each element of set *A* corresponds to one element of set *B*, and vice versa, is called a **one-to-one correspondence**.

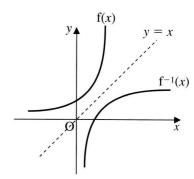


When a function f is a one-to-one correspondence from set A to set B, another function, f^{-1} , exists that maps from set B to set A. This function is called the **inverse** of f.



6 $f^{-1}(f(x)) = f(f^{-1}(x)) = x$

7 To find the graph of an inverse function reflect the graph of the function in the line y = x.



8 $f(x) = a^x, x \in \mathbb{R}$, is called an **exponential function** to base $a, a \in \mathbb{R}$, $a \neq 0$.

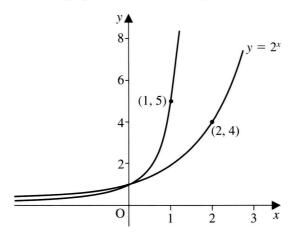
The inverse function of $f(x) = a^x$ is called the **logarithmic function** to base a, written as $\log_a x$.

If $f(x) = a^x$, then $f^{-1}(x) = \log_a x$. If $f(x) = \log_a x$, then $f^{-1}(x) = a^x$.

Example 1

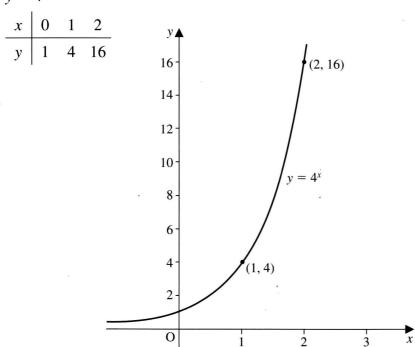
The graph of $y = 2^x$ is shown in the diagram below.

- (a) Write down the equation of the graph of the exponential function of the form $y = a^x$ which passes through the point (1, 5) as shown in the diagram.
- (b) On a similar diagram, draw the graph of the function $y = 4^x$.



Solution

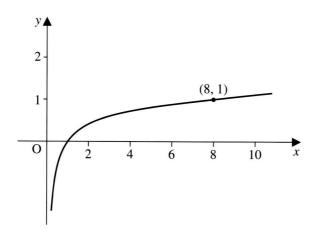
- (a) For the function $y = a^x$, when x = 1 and y = 5 then $5 = a^1$. So a = 5 and the equation of the graph is $y = 5^x$
- (b) $y = 4^x$



Example 2

The diagram below shows part of the graph of a logarithmic function.

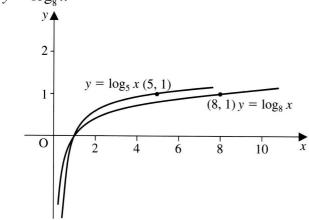
- (a) Write down the equation of the function.
- (b) Make a copy of the diagram and on it draw the graph of the function $y = \log_5 x$, showing clearly where it crosses the x-axis and marking in the coordinates of one other point that it passes through.



Solution

(a) $y = \log_8 x$

(b)



Example 3

- (a) Two functions f and g are given by $f(x) = -2x^2$ and g(x) = 5 3x. Obtain an expression for f(g(x)) and for g(f(x)).
- (b) Functions h and k, defined on suitable domains, are given by h(x) = 5x and $k(x) = \cos x^{\circ}$. Find k(h(x)) and h(k(x)).

Solution

(a)
$$f(g(x)) = f(5-3x)$$
 $g(f(x)) = g(-2x^2)$
 $= -2(5-3x)^2$ $= 5-3(-2x^2)$
 $= -50 + 60x - 18x^2$ $= 5 + 6x^2$

(b)
$$k(h(x)) = k(5x)$$

 $= \cos 5x^{\circ}$
 $h(k(x)) = h(\cos x^{\circ})$
 $= 5 \cos x^{\circ}$

Example 4

A function f is defined by f(x) = 2x + 3 where $x \in \mathbf{R}$ and a second

function g is defined by
$$g(x) = \frac{x^2 + 25}{x^2 - 25}$$
 where $x \in \mathbf{R}, x \neq \pm 5$.
The function H is defined by $H(x) = g(f(x))$. For which real

The function H is defined by H(x) = g(f(x)). For which real values of x is the function H undefined? [Higher]

Solution

$$H(x) = g(f(x)) = g(2x + 3)$$

$$= \frac{(2x + 3)^2 + 25}{(2x + 3)^2 - 25}$$

$$= \frac{4x^2 + 12x + 9 + 25}{4x^2 + 12x + 9 - 25}$$

$$= \frac{4x^2 + 12x + 34}{4x^2 + 12x - 16}$$

$$= \frac{2(2x^2 + 6x + 17)}{4(x + 4)(x - 1)}$$

The function H is undefined when the denominator is zero. Hence, the function is undefined for x = -4 and x = 1.