2012 Mathematics

Standard Grade General

Finalised Marking Instructions

© Scottish Qualifications Authority 2012
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Special Instructions

1 The main principle in marking scripts is to give credit for the skills which have been demonstrated. Failure to have the correct method may not preclude a pupil gaining credit for the calculations involved or for the communication of the answer.

Care should be taken to ensure that the mark for any question or part question is entered in the correct column, as indicated by the horizontal line.

Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the appropriate column.

It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

2 The answer to one part, correct or incorrect must be accepted as a basis for subsequent dependent parts of a question. Full marks in the dependent part are possible if it is of equivalent difficulty.

3 Do not penalise insignificant errors. An insignificant error is one which is significantly below the level of attainment being assessed.
eg
An error in the calculation of $16+15$ would not be penalised at Credit Level.

4 Working after a correct answer should only be taken into account if it provides firm evidence that the requirements of the question have not been met.

5 In certain cases an error will ease subsequent working. Full credit cannot be given for this subsequent work but partial credit may be given.

6 Accept answers arrived at by inspection or mentally, where it is possible for the answer to have been so obtained.

7 Do not penalise omission or misuse of units unless marks have been specifically allocated to units.

A wrong answer without working receives no credit unless specifically mentioned in the marking scheme.

The rubric on the outside of the Papers emphasises that working must be shown. In general markers will only be able to give credit to partial answers if working is shown. However there may be a few questions where partially correct answers unsupported by working can still be given some credit. Any such instances will be stated in the marking scheme.

9 Acceptable alternative methods of solution can only be given the marks specified, ie a more sophisticated method cannot be given more marks.

Note that for some questions a method will be specified.

10 In general do not penalise the same error twice in the one question.

11 Accept legitimate variations in numerical/algebraic questions.

12 Do not penalise bad form eg $\sin x^{0}=0 \cdot 5=30^{\circ}$.

13 A transcription error where a number has been erroneously transcribed from the examination question is not normally penalised except where the question has been simplified as a result.

14 Where multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

2012 Mathematics SG - General Level - Paper 1

Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
1 (a)	Ans: $\mathbf{1 6 . 6 9}$ - ${ }^{1} \quad$ correct calculation	
(b)	Ans: $219 \cdot 6$ - ${ }^{1}$ correct multiplication	$\bullet^{1} 219.6$ (K
(c)	Ans: $\mathbf{1 2 . 8}$ - ${ }^{1} \quad$ correct division	$\bullet^{1} 12 \cdot 8 \quad \mathbf{1 K}$
(d)	Ans: $\quad 7 / 12$ - ${ }^{1} \quad$ valid common denominator - ${ }^{2}$ completion of numerator	- 12 - ${ }^{2} \quad 7 / 12$ 2K
NOTES: In part (d) (i) for a fraction equivalent to $7 / 12-$ award $2 / 2$ (ii) for a final answer of $0.58(3 \ldots$..) - award $1 / 2$ (iii) for correct final answer without working - award $2 / 2$		
2	Ans: (£) $\mathbf{2 . 7 2 \times 1 0} \mathbf{1}$ - ${ }^{1}$ correct positioning of decimal point - ${ }^{2} \quad$ correct power of 10 in a valid expression	- $1 \quad 2.72$ $\bullet^{2} \quad \times 10^{7}$
NOTES: (i) the second mark can be awarded for a consistent power of 10 , eg 27.2×10^{6} (ii) for correct final answer without working - award $2 / 2$		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each •						Illustrations of evidence for awarding each mark	
3 (a)	Ans: 1 6 $\bullet 1$ - ${ }^{2}$	$\frac{2}{11}$ two fur	3 16 corre er co	$\begin{gathered} \hline 4 \\ \hline \mathbf{2 1} \\ \text { num } \\ \text { nect } \end{gathered}$	5 26 er of mber	$\begin{array}{\|l\|} \hline 12 \\ \hline \mathbf{6 1} \\ \hline \end{array}$ ts	- ${ }^{1}$ any two from - ${ }^{2} \quad$ remaining tw	2R
(b)	Ans: $-{ }^{1}{ }^{2}$	$c=$ cor	$s+1$ ct fo				$\bullet^{1} \bullet^{2} c=5 s+1$	2R
(c)	Ans: \bullet^{1} \bullet^{2}	23 cor cor	ct st ct so	tion	find		- $116=5 s+1$ - ${ }^{2} \quad s=23$	2R
NOTES:								
In part (b)								
(ii)	do not penalise bad form, eg $c=6 s-(s-1)$							
(iii)	a formula in words is not acceptable							
(iv)	for $s=5 c+1-\operatorname{award} 0 / 2$							
In part (c)								
(v)	the solution may be obtained from extending the table							
(vi)	for $116 \div 5-1$ leading to $22,22 \cdot 2,23-$ award $1 / 2$							
(vii) (viii)	for $s=5 c+1$ in part (b) leading to an answer of $581-$ award $1 / 2$							

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each -	Illustrations of evidence for awarding each mark
4 (a)	Ans: 42, 56 - ${ }^{1} \quad$ correct multiples of 7	$\bullet^{1} 42,56$
(b)	Ans: 43 - ${ }^{1} \quad$ correct prime number	${ }^{1} 43 \longrightarrow \mathbf{1 K}$
(c)	Ans: 50 - ${ }^{1} \quad$ the number which is closest to a square number	$\begin{array}{ll} \\ \\ & 50 \\ \mathbf{1 K}\end{array}$
5	Ans: $\mathbf{1 2 2}\left({ }^{\circ}\right)$ - ${ }^{1} \quad$ evidence of subtraction of a negative number - ${ }^{2} \quad$ correct calculation	$\bullet^{1} \quad 58-(-64)$ $\bullet^{2} \quad 122\left({ }^{\circ}\right)$
NOTES: (i) (ii) the use of a number line from -64 to 58 is acceptable for the first mark		
6	Ans: $\quad 0.05 \quad 1 / 5 \quad 5 / 100.505 \quad 51 \%$ - ${ }^{1}$ for any three numbers in the correct order from smallest - ${ }^{2}$ for further two correct leading to correct solution	- ${ }^{1}$ Three from $0.05 \frac{1}{5} 5 / 10 \quad 0.50551 \%$ \bullet^{2}
NOTES: (i) Numbers need not be written in original form (ii) For a final answer of $51 \% \quad 0.505 \quad 5 / 10 \quad 1 / 50.05-$ award $1 / 2$		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each -	Illustrations of evidence for awarding each mark
7	Ans: (£)120(.00) Saturday pay Sunday pay - ${ }^{3} \quad$ total pay	- ${ }^{1} \quad 7 \times 7.50=52.5$ - ${ }^{2} \quad 6 \times(7.50+3.75)=67.5$ - ${ }^{3} 52 \cdot 50+67 \cdot 50=(\mathfrak{f}) 120(\cdot 00)$
NOTES: (i) Alt (ii) Fin	native strategy: - ${ }^{1}$ Sunday's hours - ${ }^{2}$ total hours - ${ }^{3}$ total pay Answer With Working) 120 3/3	- ${ }^{1} 6+3=9$ - $2 \quad 9+7=16$ - ${ }^{3} 16 \times 7 \cdot 50=(£) 120(\cdot 00)$ Without Working $2 / 3$
8	Ans: 900 - \quad valid strategy - ${ }^{2} \quad$ correct use of valid strategy -3 all calculations correct, must include a division	- ${ }^{1} 80 \%=720$ - $2720 \div 8 \times 10$ - ${ }^{3} 900$
NOTES:		
$\begin{array}{ll}\text { (i) } & \mathrm{Fi} \\ \text { (ii) } & \mathrm{a} v \\ \text { (iii) } & \begin{array}{l}\text { Th } \\ (720\end{array}\end{array}$	I Answer With Working 900 $3 / 3$ id strategy may be trial and improvement third mark can be awarded for calculations $+20 \%$ of 720); or 576 (80% of 720)	Without Working $2 / 3$ ading to: 1296 (720 $+80 \%$ of 720); 864

KU 17 marks
RE 14 marks

[END OF PAPER 1 MARKING INSTRUCTIONS]

Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
1	Ans: $\quad 9.6(\mathbf{k m} / \mathrm{h})$ - ${ }^{1}$ convert time to hours - ${ }^{2}$ correct use of formula - ${ }^{3} \quad$ correct calculation, must involve a division	- ${ }^{1} \quad 1 \mathrm{hr} 15 \mathrm{mins}=1.25 \mathrm{hrs}$ - ${ }^{2} \quad 12 / 1 \cdot 25$ - ${ }^{3} \quad 9.6(\mathrm{~km} / \mathrm{h})$
NOTE:		
(i)	Answers With Working $(12 \div 1.15)$ $3 / 3$ $(12 \div 75)$ $2 / 3$ $4(1.25 \div 12)$ $2 / 3$ $(75 \div 12)$ $2 / 3$ $(12 \div 115)$ $1 / 3$ $1 / 3$	Without Working 2/3 0/3 0/3 0/3 0/3 0/3
2	Ans: Diagram completed - 1 line correct - ${ }^{2} \quad$ for a further 2 lines correct - ${ }^{3}$ for a further 2 lines correct	

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
3	Ans: (£)455 - ${ }^{1} \quad$ finding the cost of 3 base cabinets -2 finding the cost of 2 wall cabinets - \quad adding the cost of drawer cabinet to above	- $\quad 3 \times 66(=198)$ - $2 \times 39(=78)$ - ${ }^{3}$ (f) 455
NOTE: (i)		
4	Ans: $\quad \mathbf{2 3 3}\left({ }^{\circ}\right)$ - ${ }^{1} \quad$ valid strategy - ${ }^{2} \quad$ correct calculation within valid strategy	-1 $270-37$ or $180+53$ - ${ }^{2} \quad 233\left({ }^{\circ}\right)$
NOTE:		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
9 (a)	Ans: $x=5$ - ${ }^{1} \quad$ correct multiplication of bracket - ${ }^{2} \quad$ correct gathering of number terms -3 correct solution	- $12 x-18$ - ${ }^{2} \quad 42+18=60$ - ${ }^{3} \quad x=5$
(b)	Ans: $\quad 3(4 t+3 u)$ - ${ }^{1}$ correct factor -2 \quad correct factorisation	- ${ }^{1} \quad 3()$ or $(4 t+3 u)$ - ${ }^{2} \quad 3(4 t+3 u)$
NOTE: (i) In part (a) for $x=5$ without algebraic working - award $0 / 3$		
10	Ans: Yes, the mean time of the $2^{\text {nd }}$ semifinal was 0.01 s less than the $1^{\text {st }}$ - ${ }^{1} \quad$ correct addition of $2^{\text {nd }}$ semi-final times -2 knowing to divide answer to above by 8 - ${ }^{3}$ correct division - ${ }^{4}$ correct response and reason	- ${ }^{1} \quad(10.21+10 \cdot 04+9.92+\ldots)=79.76$ - ${ }^{2}(79.76) \div 8$ - 3.97 -4 Yes, the mean time of the $2^{\text {nd }}$ semifinal was 0.01 s less than the $1^{\text {st }}$
NOTES: (i) The reason must include $0.01,9.97$ or 9.98 and comparative language. Eg the second semifinal was 9.97 s which is quicker.		

FINAL	KU 40
TOTALS	RE 40

