Full Decimal Form to Scientific Notation

LI

- Know how to write numbers in Scientific Notation.

SC

- Know how to move a decimal point in the correct direction.
- Use the 4-step strategy.

Scientific notation (aka standard form) is a short way of writing VEDYBGG and very small numbers

$a \times 10^{n}$

a is any number (usually decimal) between 1 and 10 (not equal to 10)
n is an integer (..., - 2, - $1,0,1,2, \ldots$)

$$
\begin{aligned}
& 10^{1} \text { means } 10 \\
& 10^{2} \text { means } 10 \times 10=100 \\
& 10^{3} \text { means } 10 \times 10 \times 10=1000 \\
& \text { etc. } \\
& (\times 100) \\
& 10^{-1} \text { means } \frac{1}{10} \\
& 10^{-2} \text { means } \frac{1}{10^{2}}=\frac{1}{100} \\
& 1000) \\
& 10^{-3} \text { means } \frac{1}{10^{3}}=\frac{1}{1000}(\div 100)
\end{aligned}
$$

etc.

Literacy Links:

Prefix	Symbol	10^{n}	Decimal Form	Name
yotta	y	10^{24}	1000000000000000000000000	Septillion
zetta	Z	10^{21}	100000000000000000000	Sextillion
exa	E	10^{18}	1000000000000000000	Quintillion
peta	p	10^{15}	1000000000000000	Quadrillion
tera	T	10^{12}	1000000000000	Trillion
giga	G	10^{9}	1000000000	Billion
mega	M	10^{6}	1000000	Million
kilo	k	10^{3}	1000	Thousand
hecto	h	10^{2}	100	Hundred
deca	da	10^{1}	10	Ten
		10^{0}	1	One
deci	d	10^{-1}	0.1	Tenth
centi	c	10^{-2}	0.01	Hundredth
milli	m	10^{-3}	0.001	Thousandth
micro	μ	10^{-6}	0.000001	Millionth
nano	n	10^{-9}	0.000000001	Billionth
pico	p	10^{-12}	0.000000000001	Trillionth
femto	f	10^{-15}	0.000000000000001	Quadrillionth
atto	a	10^{-18}	0.000000000000000001	Quintillionth
zepto	z	10^{-21}	0.000000000000000000001	Sextillionth
yocto	y	10^{-24}	0.000000000000000000000001	Septillionth

How to Write Any Decimal Number in Scientific Notation

Step 1 : From the left, write down the first number that's not zero.
Step 2 : Put a decimal point after this number.
Step 3 : Write down the other numbers in order.
Step 4 : Then write $\times 10^{n}$, where n is the number of decimal places moved to get to the number in the question (positive if moved to right; negative if moved to left; zero if not moved).

Example 1

Write 48300 in scientific notation.

$$
48300.0
$$

Example 2

Write 0.0756 in scientific notation.

$$
\begin{aligned}
& \overbrace{7} 56 \\
& 0.0756 \\
& 0.0756=7.56 \times 10^{-2}
\end{aligned}
$$

Example 3

Write 3.431 in scientific notation.

$$
3.431=3.431 \times 10^{0}
$$

Write these numbers in scientific notation:

1) 0.00367
2) 46000
3) 1665000
4) 9.85
5) 0.0070097
6) 0.000000025698
7) 0.7002
8) 0.0222
9) 854300000
10) 0.00000821127
11) 90900000
12) 0.000743
13) 0.6078
14) 4.044
15) 0.00802
16) 0.0000186087
17) 0.0449
18) 777000
19) 9046
20) 0.0000000582
21) 0.0000000277
22) 9821000000
23) 8843200
24) 30976700000

Answers

1) 3.67×10^{-3}
2) 4.6×10^{4}
3) 6.078×10^{-1}
4) 4.044×10^{0}
5) 1.665×10^{6}
6) 9.85×10^{0}
7) 7.0097×10^{-3}
8) 2.5698×10^{-8}
9) 7.002×10^{-1}
10) 8.02×10^{-3}
11) 1.86087×10^{-5}
12) 4.49×10^{-2}
13) 7.77×10^{5}
14) 9.046×10^{3}
15) 2.22×10^{-2}
16) 5.82×10^{-8}
17) 8.543×10^{8}
18) 8.21127×10^{-6}
19) 9.09×10^{7}
20) 7.43×10^{-4}
21) 2.77×10^{-8}
22) 9.821×10^{9}
23) 8.8432×10^{6}
24) 3.09767×10^{10}
$R \quad E \quad A \quad P$

$1.1 \times 10^{-2} \quad 1.1 \times 10^{4}$
11×10
$110 \div 10000$
110×100
$110 \div 100$
1.1×10^{2}
1.1×10^{0}
```
H O M E W O R K
```

The mass of a neutron is,
0.000000000000000000000000001674927 kg

Write this in scientific notation.
$H \quad O \quad \mathrm{E}$ W O R K

The mass of a neutron is,
0.000000000000000000000000001674927 kg

Write this in scientific notation.

$$
1.674927 \times 10^{-27} \mathrm{~kg}
$$

$$
H \quad \underset{\substack{M \\ \text { (open-ended) }}}{\mathrm{M}} \quad \mathrm{O} \quad \mathrm{R}
$$

Write the masses of different stars in scientific notation.

