Foundation Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1a. Given $402+159+73$
12.8

+0.7
$\frac{13.5}{1}$

b. Given 3.65×100

Simply move point 2 places to the right.

$$
365.0 \text { or } 365
$$

c. $\frac{1}{5}$ of 85

$$
\frac{17}{5 \longdiv { 8 ^ { 3 } 5 }}
$$

2. Given 25% of $£ 484$

Step 1 : Convert 25% to a fraction $\frac{25}{100}=\frac{1}{4}$
Step 2 : Write $£$'s to 2 decimal places
$\frac{1}{3}$ of $£ 484.00$
$4 \longdiv { 4 2 1 . 0 0 } = £ 1 2 1 . 0 0$ or $£ 121$

Foundation Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
3. Given Kelly has run 3250 m of a 5000 m race. She still has to run:

$$
\begin{array}{r}
{ }^{4} 5^{9} 0^{1} 00 \\
-\quad 3250 \\
\hline 1750
\end{array}
$$

She still has to run 1750 metres

Car sold for $£ 5799$
4. Given video runs for 80 mins and it begins at 7.45 pm . It will finish at:

$$
\begin{array}{r}
7.45 \\
+0.80 \\
\frac{9.05}{2}
\end{array} \text { remember } 45 \mathrm{mins}+80 \mathrm{mins}=120 \mathrm{mins}=2 \mathrm{hrs}
$$

Video finishes at 9.05pm

Foundation Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
5.a Given the orange juice costs 29p. The cost of 10 is:
$10 \times 29 p=290 p=£ 2.90$
5. b The special pack costs 79 p for 3 cartons. Working out the cheapest way to buy 10 cartons we have:
4×3 special packs $=4 \times 79 p=316 p=£ 3.16$
but we could buy
3×3 special packs +1 carton $=3 \times 79 p+29 p$

$$
\begin{aligned}
& =237 p+29 p \\
& =266 p \\
& =£ 2.66
\end{aligned}
$$

Cheapest way to by 10 cartons is
3×3 special packs +1 carton $=£ 2.66$

Foundation Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
6.a Given the graph.

By end of Feb $£ 750$ was raised.
b. During Feb $£ 750-£ 500=£ 250$ was raised.
c. Steepest part of graph is in May therefore most money was raised then.

7. Since we are told that the profit increase in 1997-98 is the same in 1998-99. We can work out the profit in 1999 by:

Foundation Paper 22002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. Given that Erin's birthday is one week after the $28^{\text {th }}$ August then his birthday must be on:

$$
\begin{aligned}
& \text { 28th August } \rightarrow \text { 29th August (1 day) } \\
& \text { 29th August } \rightarrow \text { 30th August (2 days) } \\
& \text { 30th August } \rightarrow \text { 31th August (3 days) } \\
& \text { 31th August } \rightarrow \text { 1th Septemeber (4 days) } \\
& \text { 1st September } \rightarrow \text { 2nd September (} 5 \text { days) } \\
& \text { 2nd September } \rightarrow \text { 3rd September (} 6 \text { days) } \\
& \text { 4th September } \rightarrow \text { (} 7 \text { days) }
\end{aligned}
$$

Birthday is on 4th September.
2. (a) Given the pattern we can complete then the table by adding on 5 each time.

Pattern Number	1	2	3	4	5	6		11
Number of matchsticks	6	11	16	21	26	31		56

(b) Steps for working out the rule:

1. Difference is 5
2. Part of rule is $5 P$
3. Correction factor, so that the rule works is, add on 1

Full rule is: $M=5 P+1^{\circ}$

Foundation Paper 22002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
3. Given the wishing machine usually costs $£ 399$. With a reduction of 15% gives a new price of:

Using the calculator we have
$\frac{15}{100} \times £ 399=£ 59.85$ (divide by botttom number multiply by the top number)

New cos \dagger

$$
3^{8} 9^{8} 9 .{ }^{9} 0^{1} 0
$$

$$
\begin{array}{r}
-\quad 59.85 \\
\hline £ 339.15
\end{array}
$$

OR

$$
\begin{aligned}
& 10 \% \rightarrow £ 39.90 \\
& 5 \% \rightarrow \\
& £ 19.95 \\
& \hline 15 \% \rightarrow \\
& \text { Discount } £ 59.85
\end{aligned}
$$

New cos \dagger

$$
\begin{array}{r}
3^{8} 9^{8} 9.0^{9} 0 \\
-\quad 59.85 \\
\hline £ 339.15
\end{array}
$$

Foundation Paper 22002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
4. (a) From graph Brian works 8 hours and earnings $£ 26$.

(b) Given Jade works:
$7 \frac{1}{2}$ hours and gets paid $£ 3.20$ per hour

Her total wage is

3.20	21.60 $\times 7$ $\frac{22.40}{1}$

22.40
$\frac{+1.60}{\frac{24.00}{1}}$ Total wage is $£ 24$. See dot on graph.

Foundation Paper 22002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
5. Given the three different dice, a further possible 5 ways of getting 15 (there are more!!!! are:

Dice 1	Dice 2	Dice 3
6	6	3
6	5	4
5	6	4
5	5	5
5	4	6
4	5	6
4	6	5
3	6	6

6. Given the plan we have:
(a)

$$
\begin{aligned}
& a=4 m+3 m=7 m \\
& b=14 m-6 m=8 m
\end{aligned}
$$

(b) The perimeter is:

$$
4 m+8 m+3 m+6 m+7 m+14 m=42 m
$$

Foundation Paper 22002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
7. Continuing the pattern we get:

8. Given the diagram of the shelf. 90 cm

The area is:

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times 90 \times 70 \\
& =45 \times 70
\end{aligned}
$$

450
$\frac{x 7}{\frac{3150}{3}} \quad$ Area is $3150 \mathrm{~cm}^{2}$

Foundation Paper 22002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
9. Given the numbers:

$$
24,25,27,29,30,30,31
$$

(a) The mode is the number that appears most often 30.
(b) The mean is:
(Add up all the numbers and divide by how many numbers there are)

10. Given a cube with length 7 cm .

Volume $=$ length \times breadth \times height

$$
=7 \times 7 \times 7
$$

$=49 \times 7$

Foundation Paper 22002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
10. Given cubes of 8 cm and cubes of 10 cm . Both will be equal height when:

5 in stack

4 in stack
11. Given each cup holds 200 ml of tea and we have 1.8 litres of water we can make:
1.8 litres $=1800 \mathrm{ml}$ (multiply by a 1000)

$$
1800 \div 200=18 \div 2=2 \sqrt{18} \quad 9 \text { cups of tea can be made. }
$$

12. Given diagram:
(a) From diagram Q has a bearing of 225° from the airport.

Foundation Paper 22002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
12. (b) Given the diagram and the lines are equally spaced out, then R has a bearing of:
$270^{\circ}+30^{\circ}+30^{\circ}=330^{\circ}$

13. Given sports ground is 12 km away and lorry can deliver 30 bags. To deliver 100 bags and return to the yard the lorry has to travel a total of:
$1 0 0 \div 3 0 = 1 0 \div 3 = 3 \longdiv { 1 0 . 0 }$ has to do 4 complete trips

Each trip is total of 24 km

Total distance is 24

$$
\frac{x 4}{\frac{96}{1}} \text { Total trip } 96 \mathrm{~km}
$$

