Solving Quadratic Equations - Lesson 4
Finding Where a Quadratic Crosses the $x$ - axis

## LI

- Find the roots of a quadratic (i.e. where it crosses the $x$-axis). SC
- Factorise quadratics.
- Solve simple (i.e. linear) equations.
- Quadratic formula.



## To solve a quadratic equation means to find out which $x$-values fit the equation

## Graphical Interpretation



## Roots by Factorisation

## Example 1

Find where the following curve cuts the $x$-axis.


For intersections with the $x$-axis, $y=0$ :

$$
\begin{gathered}
x^{2}-8 x+15=0 \\
(x-5)(x-3)=0 \\
x-5=0, x-3=0 \\
x=5, x=3
\end{gathered}
$$

## Example 2

Find where the following curve cuts the $x$-axis.


For intersections with the $x$-axis, $y=0$ :

$$
\begin{gathered}
12 x-4 x^{2}=0 \\
4 x(3-x)=0 \\
4 x=0,3-x=0 \\
x=0, x=3
\end{gathered}
$$

## Roots by Quadratic Formula

## Example 3

Find, to 1 d. p., where the following curve cuts the $x$-axis.


For intersections with the $x$-axis, $y=0$ :

$$
x^{2}-10 x-13=0
$$

$$
\begin{aligned}
& a=1 \\
& b=-10, \quad b^{2}-4 a c=(-10)^{2}-4(1)(-13)=152 \\
& c=-13
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-(-10) \pm \sqrt{152}}{2(1)}
$$

$$
x=\frac{10 \pm \sqrt{152}}{2}
$$


$x=\frac{(10+\sqrt{152})}{2}, x=\frac{(10-\sqrt{152})}{2}$ $x=11.16 \ldots \quad, \quad x=-1.16 \ldots$

$$
x=-1.2,11.2 \text { (1 d.p.) }
$$

## Questions

1 Find where the following curves cut the $x$-axis.
a $y=x^{2}-10 x+24$

b $y=x^{2}-3 x-10$
c $y=25-x^{2}$


d $y=x^{2}+4 x-12$

e $y=2 x^{2}-7 x-15$
f $y=3 x^{2}+12 x$



2 Find where the following curves cut the $x$-axis, correct to 1 decimal place.
a $y=x^{2}-10 x+1$

b $y=2 x^{2}-3 x-10$

e $y=2 x^{2}-7 x+4$

d $y=3 x^{2}+5 x+1$

c $y=12-5 x^{2}$

f $y=1+4 x-2 x^{2}$


## Answers

1 a $(x-6)(x-4)=0$
$x$-axis is cut at $x=6$ and $x=4$
b $\quad(x-5)(x+2)=0$
$x$-axis is cut at $x=5$ and $x=-2$
c $\quad(x+5)(x-5)=0$
$x$-axis is cut at $x=-5$ and $x=5$
d $\quad(x+6)(x-2)=0$
$x$-axis is cut at $x=-6$ and $x=2$
e $\quad(2 x+3)(x-5)=0$
$x$-axis is cut at $x=-\frac{3}{2}$ and $x=5$
f
$3 x(x+4)=0$
$x$-axis is cut at $x=0$ and $x=-4$

2 a $\quad a=1, b=-10, c=1$
$x=9.9$ and $x=0.1$
b $\quad a=3, b=-3, c=-10$
$x=3.1$ and $x=-1.6$
$a=-5, b=0, c=12$
$x=1.5$ and $x=-1.5$
d $\quad a=3, b=5, c=1$
$x=-0.2$ and $x=-1.4$
e $\quad a=2, b=-7, c=4$
f $\quad x=2.8$ and $x=0.7$
$x=-0.2$ and $x=2.2$

