Solving Quadratic Equations - Lesson 4

# Finding Where a Quadratic Crosses the x - axis

#### LI

• Find the roots of a quadratic (i.e. where it crosses the x - axis).

#### SC

- Factorise quadratics.
- Solve simple (i.e. linear) equations.
- Quadratic formula.



# To solve a quadratic equation means to find out which x-values fit the equation

### **Graphical Interpretation**



## Roots by Factorisation

### Example 1

Find where the following curve cuts the x - axis.



For intersections with the x - axis, y = 0:

$$x^{2} - 8x + 15 = 0$$
 $(x - 5)(x - 3) = 0$ 
 $x - 5 = 0, x - 3 = 0$ 
 $x = 5, x = 3$ 

### Example 2

Find where the following curve cuts the x - axis.



For intersections with the x - axis, y = 0:

$$12 x - 4 x^{2} = 0$$

$$4 x (3 - x) = 0$$

$$4 x = 0, \quad 3 - x = 0$$

$$x = 0, \quad x = 3$$

#### Roots by Quadratic Formula

#### Example 3

Find, to 1 d. p., where the following curve cuts the x - axis.



For intersections with the x - axis, y = 0:

$$x^2 - 10x - 13 = 0$$

$$a = 1$$
,  
 $b = -10$ ,  $b^2 - 4ac = (-10)^2 - 4(1)(-13) = 152$   
 $c = -13$ 

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-10) \pm \sqrt{152}}{2(1)}$$

$$x = \frac{10 \pm \sqrt{152}}{2}$$

$$x = \frac{(10 + \sqrt{152})}{2} \cdot x = \frac{(10 - \sqrt{152})}{2}$$

$$x = 11.16...$$
 ,  $x = -1.16...$ 

$$\times = -1.2, 11.2 (1 d.p.)$$

## Questions

1 Find where the following curves cut the *x*-axis.

a 
$$y = x^2 - 10x + 24$$



**b** 
$$y = x^2 - 3x - 10$$



c 
$$y = 25 - x^2$$



d 
$$y = x^2 + 4x - 12$$



e 
$$y = 2x^2 - 7x - 15$$



$$y = 3x^2 + 12x$$



**2** Find where the following curves cut the *x*-axis, correct to 1 decimal place.

a 
$$y = x^2 - 10x + 1$$



**b** 
$$y = 2x^2 - 3x - 10$$



c 
$$y = 12 - 5x^2$$



d 
$$y = 3x^2 + 5x + 1$$



e 
$$y = 2x^2 - 7x + 4$$



f 
$$y = 1 + 4x - 2x^2$$



#### **Answers**

- a (x-6)(x-4) = 0
  - x-axis is cut at x = 6 and x = 4
  - **b** (x-5)(x+2) = 0
    - x-axis is cut at x = 5 and x = -2
  - $\mathbf{c}$  (x+5)(x-5) = 0
    - *x*-axis is cut at  $\underline{x = -5}$  and  $\underline{x = 5}$
  - **d** (x+6)(x-2)=0
    - x-axis is cut at x = -6 and x = 2
  - e (2x+3)(x-5) = 0
    - x-axis is cut at  $x = -\frac{3}{2}$  and x = 5
  - f 3x(x+4) = 0
    - x-axis is cut at x = 0 and x = -4

- 2 a a = 1, b = -10, c = 1 x = 9.9 and x = 0.1
  - **b** a = 3, b = -3, c = -10
    - x = 3.1 and x = -1.6
  - c a = -5, b = 0, c = 12
    - x = 1.5 and x = -1.5
  - **d** a = 3, b = 5, c = 1
    - x = -0.2 and x = -1.4
  - e a = 2, b = -7, c = 4
  - x = 2.8 and x = 0.7
  - f a = -2, b = 4, c = 1
    - x = -0.2 and x = 2.2