$6 / 12 / 17$
Unit 2 : Properties of Functions - Lesson 1

Even, Odd and Neither Functions

LI

- Determine whether a function is Even, Odd or Neither.

SC

- Algebra.

Even Functions

$$
\text { A function is even if } f(-x)=f(x) \quad(\forall x \in \operatorname{dom} f)
$$

An even function is one whose graph is symmetrical about the y-axis

Odd Functions

$$
\text { A function is odd if } f(-x)=-f(x) \quad(\forall x \in \operatorname{dom} f)
$$

An odd function is one whose graph, when reflected in the x-axis and then the y-axis (or vice versa) results in a graph that is identical with the original graph; this is the same as rotating the graph 180° about the origin

> | WARNING : 'Not even' doesn't necessarily |
| :--- |
| mean 'odd' and 'not odd' doesn' \dagger |
| necessarily mean 'even' |

Neither (even nor odd) Functions

A function is Neither (even nor odd) if it is not even and not odd

To show that a function is Neither, assuming $\exists f(-x)$:

- Show there is an x-value in dom f satisfying $f(-x) \neq f(x)$. and
- Show there is an x-value in dom f satisfying $f(-x) \neq-f(x)$. (could be the same x-value)

If $\nexists f(-x)$, then both conditions are automatically satisfied and hence the function is Neither.

Standard Examples of Even Functions

- $f(x)=x^{2}$
- $f(x)=\cos x$

Standard Examples of Odd Functions

- $f(x)=x^{3}$
- $f(x)=\sin x$
- $f(x)=\tan x$

Example 1

Determine whether the function $f(x)=x^{3} \sin 2 x$ is even, odd or neither.

Let $x \in \operatorname{dom} f$. Then,

$$
\begin{array}{rlrl}
& & f(x) & =x^{3} \sin 2 x \\
\therefore & & f(-x) & =(-x)^{3} \sin 2(-x) \\
\Rightarrow & & f(-x) & =-x^{3} \sin (-2 x) \\
\Rightarrow & & f(-x)=-x^{3}(-\sin 2 x) \\
\Rightarrow & & f(-x)=x^{3} \sin 2 x \\
\Rightarrow & & f(-x)=f(x)
\end{array}
$$

As $f(-x)=f(x) \forall x \in \operatorname{dom} f, f$ is even

Example 2

Determine whether the function $f(x)=x^{5} \cos 6 x$ is even, odd or neither.

Let $x \in \operatorname{dom} f$. Then,

$$
\begin{aligned}
& & f(x) & =x^{5} \cos 6 x \\
& \therefore & f(-x) & =(-x)^{5} \cos 6(-x) \\
& \Rightarrow & f(-x) & =-x^{5} \cos (-6 x) \\
\Rightarrow & & f(-x) & =-x^{5} \cos 6 x \\
\Rightarrow & & f(-x) & =-f(x)
\end{aligned}
$$

As $f(-x)=-f(x) \forall x \in \operatorname{dom} f, f$ is odd

Example 3

Determine whether the function $f(x)=e^{x}$ is even, odd or neither.

Let $x \in \operatorname{dom} f$. Then,

$$
\begin{aligned}
f(x) & =e^{x} \\
\therefore \quad f(-x) & =e^{-x} \\
f(1) & =e^{1} \Rightarrow f(1)=e \\
f(-1) & =e^{-1} \Rightarrow f(-1)=1 / e
\end{aligned}
$$

As $1 / e \neq e, f(-1) \neq f(1) ;$ as $1 / e \neq-e, f(-1) \neq-f(1)$.
As $f(-x) \neq f(x) \forall x \in \operatorname{dom} f$ and $f(-x) \neq-f(x)$ $\forall x \in \operatorname{dom} f, f$ is Neither.

Example 4

Determine whether the function $f(x)=\ln x$ is even, odd or neither.

Let $x \in \operatorname{dom} f(=$ all real numbers $x>0)$. Then,

$$
\begin{aligned}
f(x) & =\ln x \\
\therefore \quad f(-x) & =\ln (-x)
\end{aligned}
$$

As $x>0, \ln (-x)=f(-x)$ does not exist.

$$
f \text { is Neither }
$$

Example 5

Determine whether the function $f(x)=x^{2}+e^{-x}$ is even, odd or neither.

Let $x \in \operatorname{dom} f$. Then,

$$
\begin{aligned}
f(x) & =x^{2}+e^{-x} \\
\therefore \quad f(-x) & =(-x)^{2}+e^{-(-x)} \\
\Rightarrow \quad f(-x) & =x^{2}+e^{x} \\
f(1) & =1+e^{-1} \\
f(-1) & =1+e
\end{aligned}
$$

As $1+e \neq 1+e^{-1}$ (as $e \neq 1 / e$), $f(-1) \neq f(1)$;
as $1+e \neq-\left(1+e^{-1}\right), f(-1) \neq-f(1)$.

$$
\begin{aligned}
& \text { As } f(-x) \neq f(x) \forall x \in \operatorname{dom} f \text { and } f(-x) \neq-f(x) \\
& \forall x \in \operatorname{dom} f, f \text { is Neither. }
\end{aligned}
$$

Questions

Determine whether the following funtions are even, odd or neither.

1) $f(x)=x^{4} \sin 3 x$
2) $g(x)=x^{2} \cos 5 x$
3) $h(x)=e^{x}-e^{-x}$
4) $L(x)=\ln (x-5)$
5) $P(x)=\sec x$
6) $Q(x)=\operatorname{cosec} x$
7) $R(x)=\cot x$
8) $A(x)=\sin x \cos x$
9) $B(x)=\sin x+\cos x$
10) $C(x)=x+x^{3}$
11) $D(x)=1 / x$
12) $E(x)=x+1 / x^{2}$
13) $M(x)=1 /\left(6+x^{8}\right)$
14) $Z(x)=\sin ^{2} x$

Answers

Determine whether the following funtions are even, odd or neither.

1) $f(x)=x^{4} \sin 3 x \quad 0$
2) $A(x)=\sin x \cos x$
3) $g(x)=x^{2} \cos 5 x \quad E$
4) $B(x)=\sin x+\cos x \quad N$
5) $h(x)=e^{x}-e^{-x} \quad 0$
6) $C(x)=x+x^{3}$
7) $L(x)=\ln (x-5) \quad N$
8) $D(x)=1 / x$
9) $P(x)=\sec x \quad E$
10) $E(x)=x+1 / x^{2}$
N
11) $Q(x)=\operatorname{cosec} x$
0
12) $M(x)=1 /\left(6+x^{8}\right)$
E
13) $R(x)=\cot x$
0
14) $Z(x)=\sin ^{2} x$
E
