6 / 12 / 17

Unit 2 : Properties of Functions - Lesson 1

Even, Odd and Neither Functions

LI

• Determine whether a function is Even, Odd or Neither.

<u>SC</u>

• Algebra.

Even Functions

A function is even if f(-x) = f(x) ($\forall x \in \text{dom } f$)

An even function is one whose graph is symmetrical about the y - axis

Odd Functions

A function is odd if f(-x) = -f(x) $(\forall x \in dom f)$

An odd function is one whose graph, when reflected in the x - axis and then the y - axis (or vice versa) results in a graph that is identical with the original graph; this is the same as rotating the graph 180° about the origin

WARNING: 'Not even' doesn't necessarily mean 'odd' and 'not odd' doesn't necessarily mean 'even'

Neither (even nor odd) Functions

A function is Neither (even nor odd) if it is not even and not odd

To show that a function is Neither, assuming $\exists f(-x)$:

- Show there is an x value in dom f satisfying $f(-x) \neq f(x)$.

 and
- Show there is an x value in dom f satisfying $f(-x) \neq -f(x)$.

(could be the same x - value)

If # f(-x), then both conditions are automatically satisfied and hence the function is Neither.

Standard Examples of Even Functions

- $f(x) = x^2$
- $f(x) = \cos x$

Standard Examples of Odd Functions

- $f(x) = x^3$
- $f(x) = \sin x$
- $f(x) = \tan x$

Determine whether the function $f(x) = x^3 \sin 2x$ is even, odd or neither.

Let $x \in \text{dom } f$. Then,

$$f(x) = x^{3} \sin 2x$$

$$f(-x) = (-x)^{3} \sin 2(-x)$$

$$f(-x) = -x^{3} \sin (-2x)$$

$$f(-x) = -x^{3} (-\sin 2x)$$

$$f(-x) = x^{3} \sin 2x$$

$$f(-x) = f(x)$$

As
$$f(-x) = f(x) \forall x \in dom f, f is even$$

Determine whether the function $f(x) = x^5 \cos 6x$ is even, odd or neither.

Let $x \in \text{dom } f$. Then,

$$f(x) = x^{5} \cos 6x$$

$$f(-x) = (-x)^{5} \cos 6 (-x)$$

$$f(-x) = -x^{5} \cos (-6x)$$

$$f(-x) = -x^{5} \cos 6x$$

$$f(-x) = -f(x)$$

As $f(-x) = -f(x) \forall x \in dom f, f is odd$

Determine whether the function $f(x) = e^x$ is even, odd or neither.

Let $x \in \text{dom } f$. Then,

$$f(x) = e^{x}$$

$$f(-x) = e^{-x}$$

$$f(1) = e^{1} \Rightarrow \underline{f(1)} = \underline{e}$$

$$f(-1) = e^{-1} \Rightarrow f(-1) = 1/\underline{e}$$

As $1/e \neq e, f(-1) \neq f(1)$; as $1/e \neq -e, f(-1) \neq -f(1)$.

As $f(-x) \neq f(x) \forall x \in \text{dom } f \text{ and } f(-x) \neq -f(x)$ \forall x \in \text{dom } f, f is Neither.

Determine whether the function $f(x) = \ln x$ is even, odd or neither.

Let $x \in \text{dom } f (= \text{all real numbers } x > 0)$. Then,

$$f(x) = \ln x$$

$$\therefore f(-x) = \ln(-x)$$

As x > 0, $\ln(-x) = f(-x)$ does not exist.

f is Neither

Determine whether the function $f(x) = x^2 + e^{-x}$ is even, odd or neither.

Let $x \in \text{dom } f$. Then,

$$f(x) = x^{2} + e^{-x}$$

$$f(-x) = (-x)^{2} + e^{-(-x)}$$

$$f(-x) = x^{2} + e^{x}$$

$$f(1) = 1 + e^{-1}$$

$$f(-1) = 1 + e$$

As
$$1 + e \neq 1 + e^{-1}$$
 (as $e \neq 1/e$), $f(-1) \neq f(1)$; as $1 + e \neq -(1 + e^{-1})$, $f(-1) \neq -f(1)$.

As $f(-x) \neq f(x) \forall x \in \text{dom } f \text{ and } f(-x) \neq -f(x)$ \forall x \in \text{dom } f, f is Neither.

Questions

Determine whether the following funtions are even, odd or neither.

1)
$$f(x) = x^4 \sin 3x$$

2)
$$g(x) = x^2 \cos 5x$$

3)
$$h(x) = e^{x} - e^{-x}$$

4)
$$L(x) = \ln(x - 5)$$

5)
$$P(x) = \sec x$$

6)
$$Q(x) = cosec x$$

7)
$$R(x) = \cot x$$

1)
$$f(x) = x^4 \sin 3x$$
 8) $A(x) = \sin x \cos x$

9)
$$B(x) = \sin x + \cos x$$

10)
$$C(x) = x + x^3$$

11)
$$D(x) = 1/x$$

12)
$$E(x) = x + 1/x^2$$

13)
$$M(x) = 1/(6 + x^8)$$

$$14) Z(x) = \sin^2 x$$

Answers

Determine whether the following funtions are even, odd or neither.

1)
$$f(x) = x^4 \sin 3x$$
 0 8) $A(x) = \sin x \cos x$

8)
$$A(x) = \sin x \cos x$$

2)
$$g(x) = x^2 \cos 5x$$
 E 9) $B(x) = \sin x + \cos x$

9)
$$B(x) = \sin x + \cos x$$
 N

3)
$$h(x) = e^{x} - e^{-x}$$

10)
$$C(x) = x + x^3$$

4)
$$L(x) = \ln(x - 5)$$
 N

11)
$$D(x) = 1/x$$

5)
$$P(x) = \sec x$$

12)
$$E(x) = x + 1/x^2$$

6)
$$Q(x) = \csc x$$

$$12) \ C(\lambda) = \lambda + 1/\lambda$$

6)
$$Q(x) = cosec x$$

13)
$$M(x) = 1/(6 + x^8)$$

7)
$$R(x) = \cot x$$

$$(2)$$
 14) $Z(x) = \sin^2 x$