Equations with Brackets and Fractions

LI

- Solve equations with brackets and fractions.

SC

- Expand brackets.
- Eliminate fractions.
- Simplify.
- Eliminate fractions.
- Break brackets.
- Collect like terms.
- Solve.

Example 1

$$
\begin{aligned}
\frac{x}{7} & =6 \\
\times 7 \frac{x}{7} & =6 \times 7 \\
x & =42
\end{aligned}
$$

Example 2

$$
\begin{aligned}
\frac{3 x+2}{6} & =8 \\
\times 6 \quad \frac{3 x+2}{6} & =8 \times 6 \\
3 x+2 & =48 \\
3 x & =46 \\
x & =\frac{46}{3}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
\frac{3}{4}(2 x-1) & =9 \\
\frac{3^{x 4}}{4}(2 x-1) & =9^{\times 4} \\
3(2 x-1) & =36 \\
6 x-3 & =36 \\
6 x & =39 \\
x & =\frac{39}{6} \\
x & =\frac{13}{2}
\end{aligned}
$$

Example 4

$$
\begin{aligned}
\frac{5 x+2}{4}-\frac{2 x-3}{7} & =-1 \\
\frac{5 x+2}{4} \times 28-\frac{2 x-3}{7} \times 28 & =-1 \times 28 \\
7(5 x+2)-4(2 x-3) & =-28 \\
35 x+14-8 x+12 & =-28 \\
27 x+26 & =-28 \\
27 x & =-54 \\
x & =-\frac{54}{27} \\
x & =-2
\end{aligned}
$$

Questions

1 Solve the following.
a $\frac{x}{6}=5$
b $\quad \frac{x}{9}=-4$
c $\frac{x+7}{3}=5$
d $\quad \frac{x-4}{5}=2$
e $\frac{1}{5} x=8$
f $\frac{1}{9} x=6$
g $\quad \frac{3}{4} x=18$
h $\quad \frac{3 x+9}{5}=6$
i $\quad \frac{2}{3}(9-4 x)=14$

2 Solve the following, giving your answer as a fraction or mixed number where necessary.
a $\quad \frac{x}{2}+\frac{x}{4}=5$
b $\frac{x}{2}-\frac{x}{3}=4$
c $\frac{5 x}{3}+\frac{x}{6}=1$
d $\frac{2 x}{5}-\frac{x}{2}=3$
e $\frac{1}{4} x+\frac{1}{5} x=20$
f $\frac{x}{8}=2+\frac{3 x}{4}$

3 Solve the following, giving your answer as a fraction or mixed number where necessary.
a $\quad \frac{x-3}{2}+\frac{4 x}{3}=15$
b $\frac{x+1}{5}-\frac{x-1}{6}=2$
c $\frac{2 x-1}{3}+\frac{3 x+1}{4}=1$
d $\quad \frac{4 x+1}{3}+\frac{x+2}{5}=-2$
e $\quad 2 x-\frac{(3 x-1)}{4}=4$
f $\frac{3(x+1)}{4}-\frac{4(x-2)}{3}=-1$
g $\quad \frac{1}{5}(2 x-3)-\frac{2}{3}(4-x)=-4$
h $\frac{x+3}{2}-\frac{5}{6}(1-2 x)=1$

4 There are x biscuits in a family-sized tin. At a party, 45 of them are eaten, and three eighths of the biscuits remain. Set up an equation and solve it to find how many biscuits were in the tin to start with.

5 I think of a number. I multiply this number by 3 , add 5 and divide the result by 8 . My answer is four ninths of the original number. Form an equation and solve it to find the original number.

Answers

$\begin{array}{rll} \mathbf{1} & \mathbf{a} & x=30 \\ & \mathbf{b} & x=-36 \\ & \mathbf{c} & x=8 \\ & \mathbf{d} & x=14 \\ & \mathbf{e} & x=40 \\ & \mathbf{f} & x=54 \\ & \mathbf{g} & x=24 \\ & \text { h } & x=7 \\ & \text { i } & x=-3 \end{array}$	$\begin{array}{rlrl} 2 & \mathbf{a} & x & =6 \frac{2}{3} \\ \mathbf{b} & x & =24 \\ \mathbf{c} & x & =\frac{6}{11} \\ \mathbf{d} & x & =-30 \\ \mathbf{e} & x & =44 \frac{4}{9} \\ \text { f } & x & =-3 \frac{1}{5} \end{array}$	$\begin{array}{rlrl} 3 & \mathbf{a} & x & =9 \\ \mathbf{b} & x & =49 \\ \text { c } & x & =\frac{13}{17} \\ \text { d } & x & =-1 \frac{18}{23} \\ \text { e } & x & =3 \\ \text { f } & x & =7 \frac{4}{7} \\ \text { g } & x & =-\frac{11}{16} \\ \text { h } & x & =\frac{2}{13} \end{array}$
		$4 x=72$ biscuits.
		5 Original number is 9 .

