2007 Mathematics

Standard Grade Credit

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Special Instructions

1 The main principle in marking scripts is to give credit for the skills which have been demonstrated. Failure to have the correct method may not preclude a pupil gaining credit for the calculations involved or for the communication of the answer.

Care should be taken to ensure that the mark for any question or part question is entered in the correct column, as indicated by the horizontal line.

Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the appropriate column.

It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

2 The answer to one part, correct or incorrect must be accepted as a basis for subsequent dependent parts of a question. Full marks in the dependent part is possible if it is of equivalent difficulty.

3 Do not penalise insignificant errors. An insignificant error is one which is significantly below the level of attainment being assessed.
eg An error in the calculation of $16+15$ would not be penalised at Credit Level.

4 Working after a correct answer should only be taken into account if it provides firm evidence that the requirements of the question have not been met.

In certain cases an error will ease subsequent working. Full credit cannot be given for this subsequent work but partial credit may be given.

6 Accept answers arrived at by inspection or mentally, where it is possible for the answer to have been so obtained.

Do not penalise omission or misuse of units unless marks have been specifically allocated to units.

A wrong answer without working receives no credit unless specifically mentioned in the marking scheme.

The rubric on the outside of the Papers emphasises that working must be shown. In general markers will only be able to give credit to partial answers if working is shown. However there may be a few questions where partially correct answers unsupported by working can still be given some credit. Any such instances will be stated in the marking scheme.

Acceptable alternative methods of solution can only be given the marks specified, ie a more sophisticated method cannot be given more marks.

Note that for some questions a method will be specified.

In general do not penalise the same error twice in the one question.

Accept legitimate variations in numerical/algebraic questions.

Do not penalise bad form eg $\sin x^{0}=0 \cdot 5=30^{\circ}$.

A transcription error is not normally penalised except where the question has been simplified as a result.

2007 Mathematics SG - Credit Level - Paper 1

Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
1	Ans: $\quad 80 \cdot 44$ - knowing correct order of operations - carrying out both calculations	- $74 \cdot 4$ - $80 \cdot 44$
Notes:		
(i)	for $80 \cdot 44$ with or without working	$\text { award } \frac{2}{2}$
(ii)	for $74 \cdot 4$ with or without working	$\text { award } \frac{1}{2}$
	for 195.2 with or without working	$\operatorname{award} \frac{1}{2}$
(iv)	for 13.48 with or without working	$\text { award } \frac{1}{2}$
(v)	for any other answer without working	award $\frac{0}{2}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
$\mathbf{3}$	Ans: 250	
• valid strategy	\bullet multiplication by $\frac{5}{8}$	

$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Question } \\ \text { No } \end{array} \\ \hline \end{array}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
4	Ans: $\quad m=\frac{3 P+8}{2}$ or $m=\frac{3 P}{2}+4$ Method 1: - dealing with denominator - dealing with constant - dealing with coefficient Method 2: - dealing with denominator - dealing with coefficient - dealing with constant	- $3 P$ - $3 P+8=2 m$ - $\frac{3 P+8}{2}$ - $3 P$ - $\frac{3 P}{2}=m-4$ - $\frac{3 P}{2}+4$
Notes:		

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
5	Ans: $\quad x^{2}+12 x+27$ - expanding first bracket - expanding second bracket - collecting terms	- $4 x^{2}+6 x+6 x+9$ - $-3 x^{2}+18$ - $x^{2}+12 x+27$
Notes: (i) the third mark is available only when an x^{2} term is involved		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
6	Ans: $\quad f=\frac{4}{5} d+2$ - gradient - y-intercept - linear equation - equation in terms of d and f	- $\frac{4}{5}$ - +2 - $y=\frac{4}{5} x+2$ - $f=\frac{4}{5} d+2$

Notes:
(i) for a correct equation without working award $\frac{4}{4}$
(ii) where the gradient and/or y-intercept are wrong, but explicitly stated, the $3^{\text {rd }}$ and $4^{\text {th }}$ marks are still available
(iii) for an answer of $f=\frac{4}{5} d$ award $\frac{2}{4}$
(unless the y-intercept has been explicitly stated as zero, in which case, award $\frac{3}{4}$)
(iv) for an answer of $f=\frac{4}{5} d+c \quad$ award $\frac{2}{4}$
(v) an equation involving transposition of f and d may be awarded a maximum of $\frac{3}{4}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
$\mathbf{7}$	Ans: $\boldsymbol{a}-\mathbf{2} \boldsymbol{a}^{\frac{1}{2}}$	
	• starting to expand bracket	
• completing expansion	• a or $-2 a^{\frac{1}{2}}$	
Notes:		
(i) accept a^{1}		
(ii) ignore any working subsequent to a correct answer		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
8	Ans: yes, plus valid reason - valid scale factor - applying scale factor - calculation and reason	- $\frac{75}{40}$ or $\frac{40}{75}$ - $\frac{48 \times 75}{40}$ or $48 \div \frac{40}{75}$ - yes, as 90 cm is greater than required length of 80 cm

Notes:

(i) reason must contain a numerical comparison within a valid strategy

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
9	Ans: $\quad 3 \sqrt{2}$ - forming equation - solution - simplification	- $x^{2}+x^{2}=6^{2}$ - $x=\sqrt{18}$ - $3 \sqrt{2}$
Notes: (i) the third mark is obtained only for the simplification of a surd		

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
10	Ans: multiplied by $\frac{1}{8}$ (or divided by 8) - effect on L^{3} - effect on $\frac{k}{L^{3}}$	- $(2 L)^{3}$ - $\times \frac{1}{8}$ or $\div 8$
Notes: (i) (ii)	ding values for T_{l} and T_{2} using a numerical explicit statement is necessary for the $2^{\text {nd }} m$	lue for L may be awarded the $1^{\text {st }}$ mark

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
11 (a)	Ans: $\boldsymbol{x}+\boldsymbol{y}=\mathbf{3 0 0}$ - equation	- $x+y=300$ ($\mathbf{1 K U}$
Notes:		
(b)	Ans: $\quad 4 x+6 y=1380$ - terms - equation	- $4 x$ and $6 y$ - $4 x+6 y=1380$
Notes:		
(c)	Ans: 210 standard and 90 deluxe - evidence of scaling - value of x - value of y	- $4 x+4 y=1200$ or equivalent - 210 - 90
Notes:		
(i)	or 90 and 210 without working	$\text { award } \frac{0}{3}$
	or 90 and 210 verified in both equations	$\text { award } \frac{1}{3}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
12	Ans: $\quad 2$ cm - valid strategy - method - process - solution	- recognition of right angle at chord - correct use of Pythagoras - 3 - $d=2$
Notes: (i) for using a radius of 10 to obtain $d=10-\sqrt{84}$, award a maximum of 3 marks $\left(1^{\text {st }}, 3^{\text {rd }}\right.$ and $\left.4^{\text {th }}\right)$		

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
13	Ans: $\quad b=2, c=3$ - value of b - value of c	- 2 - 3 2KU
Notes:		
(i)	$2,3$	$\text { award } \frac{2}{2}$
	$\mathrm{r}(b=) 3,(c=) 2$	$\operatorname{award} \frac{0}{2}$

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
14 (a)	Ans: 8 - solution	- 8 1RE
Notes:		
(b)	Ans: 4 - substitution - solution	- $3^{n}-1=80$ - 4
Notes: (i) for evidence of implicit substitution (eg 81) award the $1^{\text {st }}$ mark (ii) for an answer of 4 with or without working award $\frac{2}{2}$		

KU 21 marks
RE 20 marks
[END OF PAPER 1 MARKING INSTRUCTIONS]

2007 Mathematics SG - Credit Level - Paper 2

Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
2	Ans: 2.2, -1.5 - method - processing - solution - rounding	- substitution into quadratic formula - $\sqrt{124}$ - $2 \cdot 19,-1 \cdot 52$ - $2 \cdot 2,-1 \cdot 5$
Notes: altern (i) (ii)	tive evidence for $3^{\text {rd }}$ and $4^{\text {th }}$ marks ${ }^{\text {rd }}$ mark (one solution and rounding) ${ }^{\text {h }}$ mark (another solution and rounding) nly the first mark is available for candid	$\begin{array}{lll} 2.19 & \rightarrow & 2.2 \\ -1.52 & \rightarrow & -1.5 \end{array}$ o process to a negative discriminant

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
$\mathbf{4}$	Ans: $\boldsymbol{x}<\mathbf{2 2}$	
	\bullet dealing with denominator or constant	$\bullet x-2<20$ or $\frac{x}{4}<5 \frac{1}{2}$
Notes:	• solution	

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
6	Ans: $\quad \mathbf{2 7 . 2} \mathbf{~ k m}$ - dealing with bearing - valid strategy - correct substitution - solution	- $\angle \mathrm{ABC}=27^{\circ}$ - third angle and use of sine rule - $\frac{a}{\sin 65^{\circ}}=\frac{30}{\sin 88^{\circ}}$ - 27.2
Notes: (i) (ii) (iii)	se of the sine rule is the only valid st here the angle sum of triangle $A B C$ eware: some candidates assume $\mathrm{C}=\mathbf{2 7} \cdot \mathbf{1 8} \mathbf{~ k m}$: in this case, only the	than 180° only the first mark is available and use $\sin 65^{\circ}=\frac{B C}{30}$ to give rk is available

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
7	Ans: $\quad 55.84 \mathrm{~cm}^{2}$ - fraction of area - use of formula - all calculations correct	- $\frac{64}{360}$ - $\frac{64}{360} \times \pi \times 5^{2}$ - $13.96 \times 4=55.84$
Notes: (i) (ii)	55.84 with or without working $3^{\text {rd }}$ mark is available only for a cal	award $\frac{3}{3}$

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
8	Ans: $\quad 10$ cm - valid strategy in triangle PQR - substitution - solution	- $\mathrm{A}=\frac{1}{2} p r \sin Q$ - $15=\frac{1}{2} \times 6 \times r \times \sin 30^{\circ}$ - 10

Notes:

(i) evidence for the $1^{\text {st }}$ mark may be implicit in the substitution
(ii) for $5 \cdot 77$ (using $\frac{1}{2} p r \cos Q$)
award a maximum of $\frac{2}{3}$
(iii) for 5 (using $\frac{1}{2} p r$)
award $\frac{0}{3}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
9	Ans: 384g Method 1: - valid strategy - processing - solution Method 2: - valid strategy - processing - solution	- 32 and 35 - $32 \times 7=224$ - $160+224=384$ - building up in multiples of 5 and 7 eg $(50,70),(100,140)$ etc - leading to 160 and 224 - $160+224=384$
Notes:		
	384 with no working	$\text { award } \frac{2}{3}$
(ii)	or an attempt to solve by dividing by 12	$\text { award } \frac{0}{3}$
	or a final answer of $67(32+35)$	$\text { award } \frac{1}{3}$
(iv) the $3^{\text {rd }}$ mark is not available for a total greater than $405(160+245)$		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
10	Ans: $\quad \mathbf{1 4 3} \cdot \mathbf{1}^{\circ}, \mathbf{2 1 6 . 9}{ }^{\circ}$ - rearranging - first solution - solution	- $\cos x^{\circ}=-\frac{4}{5}$ - 143.1° - 216.9°

Notes:

(i) for a wrong negative value of $\cos x^{\text {o }}$, a maximum of $\frac{2}{3}$ is available ($2^{\text {nd }}$ and $3^{\text {rd }}$ marks)
(ii) for a wrong positive value of $\cos x^{\mathrm{o}}$, a maximum of $\frac{1}{3}$ is available ($3^{\text {rd }}$ mark)
(iii) ignore any values outwith the given domain

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
11 (a)	Ans: proof - starting process - rearranging	- $\mathrm{A}=(10-x)(6-x)$ $\begin{gathered} \text { or } \\ \mathrm{A}=60-10 x-x(6-x) \end{gathered}$ - $\mathrm{A}=x^{2}-16 x+60$
Notes: (i) no marks are available for $\begin{aligned} \mathrm{A} & =(x-6)(x-10) \\ & =x^{2}-16 x+60 \end{aligned}$		
(b)	Ans: 4 cm - forming equation - factorising - solving equation - final solution	- $x^{2}-16 x+60=12$ - $(x-4)(x-12)$ - 4,12 - 4
Notes: (i) the $3^{\text {rd }}$ mark is available only for both possible answers (ii) the $4^{\text {th }}$ mark is for a rejection of the invalid solution (iii) for an answer of 4 without working $\operatorname{award} \frac{0}{4}$		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
12 (a)	Ans: $\quad 113 \cdot 1 \mathrm{~cm}^{2}$ - formula - solution	- $\mathrm{V}=\pi \times 3^{2} \times 4$ - $113 \cdot 1$
Notes: (i) (ii) (ii)	$52 \cdot 4$ (using $\pi d^{2} h$) may be awa 5.4 (using $\pi d h$) may be awa r the use of any other wrong formula	${ }^{\text {nd }}$ mark ${ }^{\text {nd }}$ mark $\text { award } \frac{0}{2}$
(b)	Ans: $\quad \mathbf{3 . 7 8} \mathbf{~ c m}$ - forming equation - rearranging - solution	- $\frac{2}{3} \pi \times r^{3}=113 \cdot 1$ - $r^{3}=54$ - 3.78
Notes: (i) (ii) (iii)	$452 \cdot 4 \rightarrow 216 \rightarrow 6 \cdot 0$ $75 \cdot 4 \rightarrow 36 \rightarrow 3 \cdot 3$ e third mark is available only for th	$\begin{array}{r} \text { award } \frac{3}{3} \\ \text { award } \frac{3}{3} \\ \text { fa number } \end{array}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
13	Ans: $£ 19600$ - valid strategy - finding roots - finding midpoint - solution	- $4 x(140-x)=0$ - 0,140 - 70 - 19600
Notes: (i) (ii) (iii)	the $1^{\text {st }}$ mark, the equation need not and $2^{\text {nd }}$ marks statement of $x=70$ leading to $£ 19$ ny method involving trial and impro	thus 0,140 alone is awarded the awarded a maximum of $\frac{2}{4}$ ives no credit

