Advanced Trigonometry - Lesson 2

Cosine Rule (Angle)

LI

- Use the Cosine Rule to find a missing angle in any triangle.

SC

- Use a calculator properly.

Rearrange $a^{2}=b^{2}+c^{2}-2 b c \cos A^{0}$ for $\cos A^{0}$ to get :

$$
\cos A^{0}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Example 1

Calculate A° to 1 dip. .

$$
\begin{aligned}
& \begin{array}{ll}
A^{\circ}= & , \quad a=8 \\
B^{\circ}= & , b=19 \\
C^{\circ}= & , c=13 \\
\hline
\end{array} \\
& \cos A^{\circ}=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos A^{\circ}=\frac{19^{2}+13^{2}-8^{2}}{(2 \times 19 \times 13)} \\
& \cos A^{\circ}=\frac{466}{494} \\
& A^{0}=\cos ^{-1}(466 \div 494) \\
& A^{\circ}=19.4^{\circ}
\end{aligned}
$$

Example 2

Calculate P° to 1 dip. .

$$
\cos P^{\circ}=\frac{r^{2}+q^{2}-p^{2}}{2 r q}
$$

$$
\cos P^{\circ}=\frac{24^{2}+37^{2}-17^{2}}{(2 \times 24 \times 37)}
$$

$$
\cos P^{\circ}=\frac{1656}{1776}
$$

$$
P^{0}=\cos ^{-1}(1656 \div 1776)
$$

$$
P^{\circ}=21.2^{\circ}
$$

Questions

1 Calculate the size of the missing angle in each triangle. Give your answers to 1 decimal place.
a

b

C

d

2 A swimming pool is designed in the shape of a triangle as shown. Calculate the size of the largest angle. Give your answer to 1 decimal place.

3 The perimeter of the triangle shown is 28 m . Calculate the size of angle x° to 1 decimal place.

4 A flag is designed in the shape of a triangle. The edges measure $40 \mathrm{~cm}, 37 \mathrm{~cm}$ and 20 cm . Calculate the size of the smallest angle to 1 decimal place.

5 Show that for an equilateral triangle, with sides of length $x \mathrm{~cm}, \cos A=\frac{1}{2}$.
6 Calculate the height of the balloon above the ground.

Answers

$$
\begin{array}{lll}
\mathbf{1} & \mathbf{a} & 111.8^{\circ} \\
& \mathbf{b} & 84.1^{\circ} \\
& \mathbf{c} & 56.6^{\circ} \\
& \mathbf{d} \quad 88.6^{\circ} \\
\mathbf{2} & 71.3^{\circ} \\
\mathbf{3} & 20.2^{\circ} \\
\mathbf{4} & 29.8^{\circ} \\
\mathbf{5} & \cos (A)=\frac{x^{2}+x^{2}-x^{2}}{2 x^{2}}=\frac{1}{2} \\
\mathbf{6} & 346.5 \mathrm{~m}
\end{array}
$$

