Pythagoras' Theorem - Lesson 6

Converse of Pythagoras' Theorem

LI

- Know the Converse of Pythagoras' Theorem.
- Use the Converse of Pythagoras to decide whether or not a triangle is right-angled.

SC

• Squaring and adding numbers.

Statement: If Jo behaves, Mo does not give Jo a detention.

Converse Statement: If Mo does not give Jo a detention, then Jo behaves.

Pythagoras: If a triangle is right-angled, then the longest side squared equals the sum of the shorter sides squared.

Converse of Pythagoras: If the longest side squared equals the sum of the shorter sides squared, then the triangle is right-angled.

Short Version of Converse of Pythagoras

c is longest side

Triangle is RA
$$c^2 = a^2 + b^2$$

Triangle is RA $c^2 = a^2 + b^2$

Triangle is not RA
$$c^2 \neq a^2 + b^2$$

Triangle is not RA $c^2 \neq a^2 + b^2$

The Converse of Pythagoras is used to decide if a triangle is right-angled or not.

Example 1

Decide whether or not the triangle with sides 6,8 and 10 is right-angled.

Shorter Sides

 $6^2 = 36$ $8^2 = 64$ 36 + 64 = 100

Longest Side

 $10^2 = 100$

As the sum of the shorter sides squared equals the longest side squared, by the Converse of Pythagoras' Theorem, the triangle is right-angled.

Example 2

Is the triangle with sides 14 cm, 20 cm and 24 cm right-angled?

Justify your answer.

Shorter Sides

Longest Side

$$14^2 = 196$$
 $20^2 = 400$
 $196 + 400 = 596$

 $24^2 = 576$

As the sum of the shorter sides squared does not equal the longest side squared, by the Converse of Pythagoras, the triangle is not right-angled.

Questions

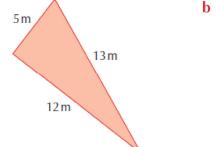
Decide if these triangles are right-angled or not.

Justify your answer.

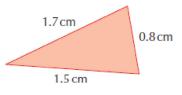
- 1) 3, 4, 5.
- 2) 41, 11, 39.
- 3) 8, 10, 6.
- 4) 26, 24, 10.
- 5) 41, 9, 42.
- 6) 5, 13, 12.
- 7) 1.5, 2.5, 2.1.
- 8) 12, 15, 8.

Answers

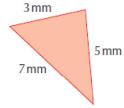
Decide if these triangles are right-angled or not.

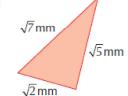

Justify your answer.

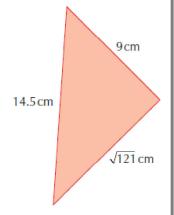
1)	3	4,	5	YES
/	J.	Т,	J.	,

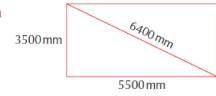

Questions

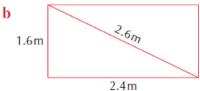
1 Use the converse of Pythagoras' theorem to determine if these triangles are right-angled or not.

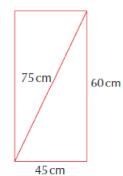

a


b

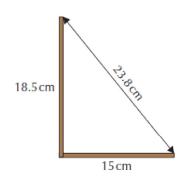

C




f


2 These shapes look rectangular but are they? Use the converse of Pythagoras' theorem to check.

a



C

3 Fergus has spent his afternoon putting up a shelf, but his brother James says it looks wrong against the wall. Use the dimensions in the picture to decide if the shelf has been put up square to the wall.

Answers

- 1 a, b, d, and e are right-angled; c and f are not right-angled
- 2 a and b are not rectangular;
 - c is rectangular
- 3 Shelf is not at right angles to the wall.