Volumes - Lesson 7
 Volume of a Cone - Non-Calculator

LI

- Calculate the Volume of a Cone without using a calculator.

SC

- Cone formula.

Volume of a Cone

(r is radius of circle, h is height)

Remember, r^{2} means $r \times r$

$$
V=\pi \times r \times r \times h \div 3
$$

Example 1

Calculate the volume of a cone of radius 10 cm and height 6 cm .

Take $\pi=3.14$.

$$
\begin{aligned}
& V=\pi \times r^{2} \times h \div 3 \\
& V=3.14 \times 10^{2} \times 6 \div 3 \\
& V=3.14 \times 100 \times 2 \\
& V=314 \times 2 \\
& V=628 \mathrm{~cm}^{3}
\end{aligned}
$$

Example 2

Calculate the volume of a cone of radius 20 cm and height 3 cm .

Take $\pi=3.14$.

$$
\begin{aligned}
& V=\pi \times r^{2} \times h \div 3 \\
& V=3.14 \times 20^{2} \times 3 \div 3 \\
& V=3.14 \times 400 \times 1 \\
& V=314 \times 4 \\
& V=1256 \mathrm{~cm}^{3}
\end{aligned}
$$

Example 3

Calculate the exact volume (meaning leave your answer in terms of π) of a cone of radius 5 cm and height 9 cm .

$$
\begin{aligned}
& V=\pi \times r^{2} \times h \div 3 \\
& V=\pi \times 5^{2} \times 9 \div 3 \\
& V=\pi \times 25 \times 3 \\
& V=\pi \times 75 \\
& V=75 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Example 4

Calculate the exact volume (meaning leave your answer in terms of π) of a cone of radius 4 cm and height 5 cm .

$$
\begin{aligned}
& V=\pi \times r^{2} \times h \div 3 \\
& V=\pi \times 4^{2} \times 5 \div 3 \\
& V=\pi \times 16 \times 5 \div 3 \\
& V=\pi \times 80 \div 3 \\
& V=80 \pi / 3 \mathrm{~cm}^{3}
\end{aligned}
$$

Calculate the volumes of these cones:

Take $\pi=3.14$	Exact volume (answer in terms of π)
1) $r=2 \mathrm{~cm}, \mathrm{~h}=3 \mathrm{~cm}$	8) $r=6 \mathrm{~cm}, \mathrm{~h}=3 \mathrm{~cm}$
2) $r=10 \mathrm{~cm}, \mathrm{~h}=3 \mathrm{~cm}$	9) $r=3 \mathrm{~cm}, \mathrm{~h}=12 \mathrm{~cm}$
3) $r=30 \mathrm{~cm}, \mathrm{~h}=1 \mathrm{~cm}$	10) $r=7 \mathrm{~cm}, \mathrm{~h}=2 \mathrm{~cm}$
4) $r=30 \mathrm{~cm}, \mathrm{~h}=2 \mathrm{~cm}$	11) $r=8 \mathrm{~cm}, \mathrm{~h}=4 \mathrm{~cm}$
5) $r=100 \mathrm{~cm}, \mathrm{~h}=6 \mathrm{~cm}$	12) $r=11 \mathrm{~cm}, \mathrm{~h}=6 \mathrm{~cm}$
6) $r=1000 \mathrm{~cm}, \mathrm{~h}=6 \mathrm{~cm}$	13) $r=12 \mathrm{~cm}, \mathrm{~h}=9 \mathrm{~cm}$
7) $r=100 \mathrm{~cm}, \mathrm{~h}=9 \mathrm{~cm}$	14) $r=20 \mathrm{~cm}, \mathrm{~h}=5 \mathrm{~cm}$

Answers		
Take $\pi=3.14$		
1) $12.56 \mathrm{~cm}^{3}$	Exact volume (answer in terms of π)	
2) $314 \mathrm{~cm}^{3}$	8) $36 \pi \mathrm{~cm}^{3}$	
3) $942 \mathrm{~cm}^{3}$	9) $36 \pi \mathrm{~cm}^{3}$	
4) $1884 \mathrm{~cm}^{3}$	10) $98 \pi / 3 \mathrm{~cm}^{3}$	
5) $62800 \mathrm{~cm}^{3}$	11) $256 \pi / 3 \mathrm{~cm}^{3}$	
6) $6280000 \mathrm{~cm}^{3}$	12) $242 \pi \mathrm{~cm}^{3}$	
7) $94200 \mathrm{~cm}^{3}$	13) $432 \pi \mathrm{~cm}^{3}$	
	14) $2000 \pi / 3 \mathrm{~cm}^{3}$	

