Volume of a Cone - Calculator

LI

- Calculate the Volume of a Cone.

SC

- Cone formula.

Volume of a Cone

(r is radius of circle, h is height)

Remember, r^{2} means $r \times r$

$$
V=\pi \times r \times r \times h \div 3
$$

Example 1

Calculate the volume of a cone of radius 4 cm and height 6 cm (2 decimal places).
$V=\pi \times r \times r \times h \div 3$
$V=\pi \times 4 \times 4 \times 6 \div 3$
$V=100.53 \mathrm{~cm}^{3}$

Example 2

Calculate the volume of a cone of diameter 14 cm and height 3 cm (2 decimal places).

$$
\text { radius }=7 \mathrm{~cm}
$$

$V=\pi \times r \times r \times h \div 3$
$V=\pi \times 7 \times 7 \times 3 \div 3$
$V=153.94 \mathrm{~cm}^{3}$

Calculate the volumes of these cones (2 decimal places) :

1) $\mathrm{r}=8 \mathrm{~cm}, \mathrm{~h}=4 \mathrm{~cm} \quad$ 9) $\mathrm{r}=8.5 \mathrm{~cm}, \mathrm{~h}=4.7 \mathrm{~cm}$
2) $D=16 \mathrm{~cm}, \mathrm{~h}=10 \mathrm{~cm}$ 10) $D=9.9 \mathrm{~cm}, \mathrm{~h}=8.5 \mathrm{~cm}$
3) $r=19 \mathrm{~cm}, \mathrm{~h}=11 \mathrm{~cm}$
4) $\mathrm{r}=0.5 \mathrm{~cm}, \mathrm{~h}=2.5 \mathrm{~cm}$
5) $D=21 \mathrm{~cm}, \mathrm{~h}=13 \mathrm{~cm}$
6) $r=38 \mathrm{~cm}, \mathrm{~h}=56 \mathrm{~cm}$
7) $D=20.1 \mathrm{~cm}, \mathrm{~h}=1.5 \mathrm{~cm}$
8) $r=1.1 \mathrm{~cm}, \mathrm{~h}=2.2 \mathrm{~cm}$
9) $D=67 \mathrm{~cm}, \mathrm{~h}=67 \mathrm{~cm}$
10) $D=11.1 \mathrm{~m}, \mathrm{~h}=3.2 \mathrm{~m}$
11) $r=50 \mathrm{~cm}, \mathrm{~h}=100 \mathrm{~cm}$
12) $r=1.01 \mathrm{~mm}, \mathrm{~h}=1.1 \mathrm{~mm}$
13) $D=200 \mathrm{~cm}, \mathrm{~h}=101 \mathrm{~cm}$ 16) $D=\mathrm{h}=200 \mathrm{~mm}$

N5 Student Book pg. 81 Ex. 10C All Q

1 Calculate the volume of each of these cones.
a

c

d

2 Calculate the height of a cone with volume $64 \mathrm{~cm}^{3}$ and radius 3 cm . Write your answer correct to 3 significant figures.
3 This hat is in the shape of a cone. Calculate the diameter of the hat if it has volume $124 \mathrm{~cm}^{3}$ and height 21 cm .

4 A frustum is a cone with the top sliced off.
A frustum is created from a cone with height 12 cm and base diameter 8 cm by making a horizontal cut 3 cm from the apex of the cone.

Calculate the volume of the frustum if the diameter of the top of the frustum is 3 cm .

5 The point at the tip of a javelin is formed by sharpening a cylinder of metal to produce a perfect cone at the end with no overall loss in length. If the diameter of the javelin is 3 cm , and the conical tip is of height 18 cm , calculate
 the volume of metal removed when creating the tip.

Answers		
1) $268.08 \mathrm{~cm}^{3}$	9)	$355.60 \mathrm{~cm}^{3}$
2) $670.21 \mathrm{~cm}^{3}$	10)	$218.10 \mathrm{~cm}^{3}$
3) $4158.42 \mathrm{~cm}^{3}$	11)	$0.65 \mathrm{~cm}^{3}$
4) $1500.90 \mathrm{~cm}^{3}$	12)	$158.65 \mathrm{~cm}^{3}$
5) $84680.58 \mathrm{~cm}^{3}$	13)	$2.79 \mathrm{~cm}^{3}$
6) $78739.57 \mathrm{~cm}^{3}$	14)	$103.22 \mathrm{~m}^{3}$
7) $261799.39 \mathrm{~cm}^{3}$	15)	$1.18 \mathrm{~mm}^{3}$
8) $1057669.53 \mathrm{~cm}^{3}$	16)	$2094395.10 \mathrm{~mm}^{3}$
Exercise 10C		
$1 \mathrm{a} \quad V=66.0 \mathrm{~cm}^{3}$		
b $\quad V=20.9 \mathrm{~cm}^{3}$		
c $V=8.3 \mathrm{~cm}^{3}$		
d $\quad V=0.1 \mathrm{~m}^{3}$		
$2 h=6.79 \mathrm{~cm}$		
$3 d=4.7 \mathrm{~cm}$		
$4 V=194.0 \mathrm{~cm}^{3}$		
$5 V=84.8 \mathrm{~cm}^{3}$		

