$14 / 12 / 17$
Unit 2 : Properties of Functions - Lesson 5

Asymptotes and Sketching Rational Functions

LI

- Know the various types of asymptotes of rational functions.
- Sketch rational functions with full annotation.

SC

- Long division.
- Graph sketching.

An asymptote is a line (not necessarily straight) that a function approaches as the x-values approach a certain value

Types

A function f has vertical asymptote $x=A$ if f
approaches $\pm \infty$ as x approaches A from values
smaller than $A\left(A^{-}\right)$or x approaches
A from values bigger than $A\left(A^{+}\right)$

A vertical asymptote is parallel to the y-axis

A function f has horizontal asymptote $y=B$ if f approaches B as \times approaches $\pm \infty$

A horizontal asymptote is parallel to the x-axis

A function f has an oblique asymptote $y=g(x)$ if f approaches $g(x)$ as x approaches \pm infinity

In this course, oblique asymptotes will be straight lines, so the equation will be $y=m x+c(m \neq 0)$

Rational Functions

Every improper rational function $\frac{P(x)}{Q(x)}(\operatorname{deg} P \geq \operatorname{deg} Q$) can be written (using long division) in the form :

$$
\frac{P(x)}{Q(x)}=W(x)+\frac{R(x)}{Q(x)} \quad(\operatorname{deg} R<\operatorname{deg} Q)
$$

Vertical asymptotes: solve $Q(x)=0$.
$y=W(x)$ will give either a horizontal or oblique asympotote:
Horizontal asymptote: $W(x)=$ constant.
Oblique asymptote: $\mathrm{W}(\mathrm{x})=\mathrm{m} x+c(m \neq 0)$.

Sketching Rational Functions

When sketching graphs of rational functions, consider:

- Asymptotes.
- Intersections with axes.
- Stationary points.
- Inflexion points.

Example

Sketch the graph of $y=\frac{x^{2}-3 x+3}{x-2}$.

Long division gives (check!),

$$
y=\frac{x^{2}-3 x+3}{x-2}=(x-1)+\frac{1}{x-2}
$$

Asymptotes

$$
V A: x=2
$$

As $x \longrightarrow 2^{-}, y \longrightarrow-\infty$.
As $x \longrightarrow 2^{+}, y \longrightarrow \infty$.

$$
O A: y=x-1
$$

As $x \rightarrow-\infty, y \rightarrow(x-1)^{-}$.
As $x \rightarrow \infty, y \longrightarrow(x-1)^{+}$.

Intersections with Axes

$x=0 \Rightarrow y=-3 / 2:(0,-3 / 2)$
$y=0 \Rightarrow x^{2}-3 x+3=0$; discriminant <0, so no
solutions for y.

Stationary Points

$$
\begin{aligned}
y & =x-1+(x-2)^{-1} \\
\therefore \quad y^{\prime} & =1-(x-2)^{-2} \\
y^{\prime \prime} & =2(x-2)^{-3}
\end{aligned}
$$

Solving $y^{\prime}=0$ gives two stationary points : $(1,-1),(3,3)$; the second derivative classifies them.

$$
(1,-1) \text { is a local max. } ;(3,3) \text { is a local min. }
$$

Inflexion Points

Attempting to solve $y^{\prime \prime}=0$ gives,

$$
\frac{2}{(x-2)^{3}}=0 \Rightarrow 2=0
$$

which is clearly nonsense. Hence, no inflexion points.

$$
\begin{gathered}
\text { AH Maths - MiA }\left(2^{\text {nd }}\right. \text { Edn.) } \\
\text { - pg. } 77 \text { Ex. } 5.11 \text { Q } 1 a, b, c, d, e, \\
\text { g, h,i,j,l. }
\end{gathered}
$$

Ex. 5.11

1 Sketch these graphs.
a $y=\frac{1}{x+3}$
b $y=\frac{3}{2 x+8}$
c $y=\frac{x}{x+2}$
d $y=\frac{x-1}{x+1}$
e $y=\frac{1-x}{1+x}$
g $y=\frac{x}{(x-1)(x+1)}$
h $y=\frac{x^{2}}{x+1}$
i $y=x-\frac{1}{x}$
j $y=\frac{x^{2}}{1-x}$
$1 y=\frac{1}{(x-2)(x-4)}$

Answers to AH Maths (MiA), pg. 77, Ex. 5.11

1) (a)

(b)

(c)

(d)

(e)

(g)

(j)

(I)

