21 / 12 / 17

Unit 2 : Applications of Calculus - Lesson 2

Areas and Volumes of Revolution

LI

- Work out areas between curves relative to the y-axis.
- Work out volumes of solids of revolution about both axes.

SC

- Integration.
Areas

$$
\begin{array}{ll}
A=\int_{a}^{b}\left(y_{T}-y_{B}\right) d x & \text { ('Top - Bottom') } \\
A=\int_{c}^{d}\left(x_{R}-x_{L}\right) d y & \text { ('Right - Left') }
\end{array}
$$

Volumes

A volume of solid of revolution is a 3D shape formed by rotating a curve about the x-axis or the y-axis

$$
\begin{array}{|l|l|}
\hline \\
V_{x}=\pi \int_{a}^{b}\left(y_{T}{ }^{2}-y_{B}{ }^{2}\right) d x & \text { ('Top - Bottom') } \\
V_{y}=\pi \int_{a}^{d}\left(x_{R}{ }^{2}-x_{L}{ }^{2}\right) d y & \text { ('Right - Left') } \\
\hline
\end{array}
$$

Example 1

Find the area enclosed between the curves $x=(1 / 2) y$ and $x=\sqrt{y}$.

The graphs meet when,

$$
\begin{aligned}
&(1 / 2) y=\sqrt{y} \\
&(1 / 4) y^{2}=y \\
& y^{2}-4 y=0 \\
& y(y-4)=0 \\
& y=0, y=4
\end{aligned}
$$

Example 2

Find the volume of solid of revolution formed by rotating the region enclosed between the curves $y=x^{2}$ and $y=2 x$ 360° about the (a) x-axis (b) y-axis.

(a)

$$
\begin{aligned}
& V_{x}=\pi \int_{0}^{2}\left(4 x^{2}-x^{4}\right) d x \\
\therefore & V_{x}=\pi\left[(4 / 3) x^{3}-(1 / 5) x^{5}\right]_{0}^{2} \\
\Rightarrow & V_{x}=\pi((32 / 3)-(32 / 5))-\pi(0-0) \\
\Rightarrow & V_{x}=64 \pi / 15 \text { cubic units }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& V_{y}=\pi \int_{0}^{4}\left(y-(1 / 4) y^{2}\right) d y \\
\therefore & V_{y}=\pi\left[(1 / 2) y^{2}-(1 / 12) y^{3}\right]_{0}^{4} \\
\Rightarrow & V_{y}=\pi(8-(64 / 12))-\pi(0-0) \\
\Rightarrow & V_{y}=8 \pi / 3 u^{3}
\end{aligned}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 120-3 Ex. 7.10

Q 1, 6, 7, 9, $11 \mathrm{a}, \mathrm{b}, 12 \mathrm{a}-\mathrm{c}$, d (i), 13, 14 .

Ex. 7.10

1 The chart shows $y=\frac{1}{4 \sqrt{4-x^{2}}}$ in the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
Calculate the area trapped between the curve and the x-axis in this interval.

6 The sketch shows $y=x^{2}+1$ close to the origin.
a State the y-values corresponding to $x=2$ and $x=3$.
b Express x in terms of y, considering the positive root only.
c Calculate the shaded area.

7 Calculate the area trapped between the function $y=\frac{\sqrt{x}+1}{2}$ and the y-axis in the interval $1 \leq x \leq 9$.

9 The sketch shows $y=\ln x$ and $y=x-2$ close to the origin.
Calculate the shaded area trapped between $y=\ln x$, $y=x-2, y=1$ and $y=0.5$.

11 The equation of an ellipse, centre the origin, and major axis lying on the x-axis, is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (see diagram for explanation of a and b).

If the shape is rotated about the x-axis, the solid generated is called a prolate spheroid. Each cross-section perpendicular to the x-axis is a circle.
In theory, a rugby ball takes this shape.
a Find a formula for the volume of the prolate spheroid using $V=\int_{-a}^{a} \pi y^{2} \mathrm{~d} x$.
b If, instead, the shape is rotated about the y-axis, the shape generated is called an oblate spheroid.
Your geography teacher will tell you the Earth is an oblate spheroid.
Find a formula for the volume of the oblate spheroid using $V=\int_{-b}^{b} \pi x^{2} \mathrm{~d} y$.

12 a When a line with equation $y=m x$ is rotated about the x-axis in the interval $0 \leq x \leq h$, a cone is generated. When $x=b, y=r$. [That is, $m=\frac{r}{b}$.]

Use integration to find a formula in r and b for the volume of a cone.
b When the line is rotated about the x-axis in the interval $h_{1} \leq x \leq h_{2}$, a truncated cone is generated. Use integration to find its volume.
c When the line $y=r$, where r is a constant, is rotated about the x-axis in the interval $0 \leq x \leq h$, a cylinder of height b and radius r is generated.
Use integration to find a formula for its volume.
d $x^{2}+y^{2}=r^{2}$ is the equation of a circle. $y=\sqrt{r^{2}-x^{2}}$ is the equation of the semicircle shown.

i If this is rotated about the x-axis, a sphere is generated. Use integration to find a formula for its volume.
13 a Draw a sketch of the curve $y=x^{2}+2 x-3$ in the interval $0 \leq x \leq 2$.
b Express the equation in the form $y=(x+a)^{2}+b$.
c Hence find an expression for x^{2} in terms of y.
d The curve is rotated around the y-axis. What is the volume of the shape generated?
14 The curve $y=\sin \left(x^{2}\right)$ is rotated about the y-axis in the interval $0 \leq x \leq \sqrt{\frac{\pi}{2}}$.
Find the volume of the solid generated.

Answers to AH Maths (MiA), pg. 120-3, Ex. 7.10

1) $(1 / 2) \sin ^{-1}(\pi / 4) \approx 0.452$.
2) $38 / 3$.
3) $13 / 3$.
4) 0.3054 .
5) (a) $(4 / 3) \pi a b^{2}$.
(b) $(4 / 3) \pi a^{2} b$.
6) (a) $(1 / 3) \pi r^{2} h$.
(b) $(1 / 3) \pi r^{2}\left(h_{2}-h_{1}\right)$.
(c) $\pi r^{2} h$.
(d) (i) $(4 / 3) \pi r^{3}$.
7) (a) Parabola passing through ($0,-3$), (1,0) and $(2,5)$ - RHS of parabola.
(b) $y=(x+1)^{2}-4$.
(c) $x^{2}=(\sqrt{y+4}-1)^{2}$.
(d) $(40 \pi / 3)$.
8) $\pi / 2(\pi-2)$.
