Advanced Trigonometry - Lesson 6

Area of a Triangle

LI

- Calculate the area of a triangle using trigonometry.

SC

- Use a calculator properly.

Area of a Triangle

AREA $=\frac{1}{2} a b \sin C^{\circ}$
AREA $=\frac{1}{2} b c \sin A^{\circ}$
AREA $=\frac{1}{2} c a \sin B^{\circ}$

Example 1

Calculate the area of this triangle to 1 dip. :

$A^{\circ}=11^{\circ}$,	$a=$
$B^{\circ}=$	$\quad b=42$
$C^{\circ}=$	$C=32$

AREA $=\frac{1}{2} b c \sin A^{\circ}$
AREA $=\frac{1}{2} \times 42 \times 32 \times \sin 11^{\circ}$
AREA $=128.2$ units 2

Example 2

Calculate the area of this triangle to 1 dip. :

$$
\begin{array}{ll}
\mathrm{W}^{\circ}=24^{\circ}, & \mathrm{w}=18 \\
\mathrm{R}^{\circ}=38^{\circ}, & \mathrm{r}=27 \\
\mathrm{P}^{\circ}=118^{\circ}, & \mathrm{p}=
\end{array}
$$

AREA $=\frac{1}{2} r w \sin P^{\circ}$
AREA $=\frac{1}{2} \times 27 \times 18 \times \sin 118^{\circ}$
AREA $=214.6$ units 2

Example 3

If the following triangle has an area of $52.2 \mathrm{~m}^{2}$, find the length $A B$ (to the nearest metre):

$$
\begin{array}{ll}
\hline \mathrm{A}^{\circ}=42^{\circ}, & \mathrm{a}= \\
\mathrm{B}^{\circ}= & , \quad \mathrm{b}=12 \\
\mathrm{C}^{\circ}= & \\
\end{array}
$$

AREA $=\frac{1}{2} b c \sin A^{\circ}$
$52.2=\frac{1}{2} \times 12 \times \mathrm{p} \times \sin 42^{\circ}$
$52.2=\left(6 \sin 42^{\circ}\right) p$
$p=52.2 /\left(6 \sin 42^{\circ}\right)$
$p=13 m$

Example 4

If the following triangle has an area of $47 \mathrm{~cm}^{2}$, find the angle at H (to 1 dip.):

$$
\begin{array}{ll}
\mathrm{R}^{\circ}= & , \mathrm{r}=19 \\
\mathrm{~F}^{\circ}= & \mathrm{f}=20 \\
H^{\circ}= & \mathrm{p}= \\
\hline
\end{array}
$$

AREA $=\frac{1}{2} f r \sin H^{\circ}$

$$
\begin{aligned}
& 47=\frac{1}{2} \times 20 \times 19 \times \sin H^{\circ} \\
& 47=190 \sin H^{\circ}
\end{aligned}
$$

$$
\sin H^{\circ}=47 / 190
$$

$$
H^{\circ}=\sin ^{-1}(47 \div 190)
$$

$$
H^{\circ}=14.3^{\circ}
$$

Questions

1 Use the area formula to calculate the area of each triangle giving your answers to 1 decimal place.

b

C

d

f

2 A banner for a maths club is being designed in the shape of a triangle. The cost of material for the banner is $£ 3.50$ per m^{2}. Which of the two designs shown would be cheaper and by how much?

3 An artist has created a pyramid as part of an installation and has to paint all the triangular faces. Each tin of paint he buys will cover $8 \mathrm{~m}^{2}$. How many tins of paint will he require to complete the job?

4 Find the area of the rhombus shown giving your answer to 3 significant figures.

6 The sail for a boat is to be designed as shown.
Calculate the area of the sail to 3 significant figures.

7 A manufacturing company needs to makes triangular tiles for a bathroom design. Two possible samples are shown below. Which one would be cheaper assuming both are made using the same material?

8 Calculate the area of the regular pentagon shown.

9 Using the same measurements from the centre to a vertex as in Question 8, calculate the area of:
a a regular hexagon
b a regular octagon
c a regular decagon

Answers

1 a $119.5 \mathrm{~cm}^{2}$
b $\quad 51.7 \mathrm{~cm}^{2}$
c $\quad 34.7 \mathrm{~cm}^{2}$
d $\quad 92.7 \mathrm{~km}^{2}$
e $\quad 45.3 \mathrm{~mm}^{2}$
f $124.4 \mathrm{~cm}^{2}$
2 Purple flag cheaper by 58 p
32
$4800 \mathrm{~cm}^{2}$

Questions

1 Calculate the missing side in each example shown giving your answers to 2 decimal places.
a

b

$$
\text { area }=25.3 \mathrm{~m}^{2}
$$

d

e

area $=250 \mathrm{~mm}^{2}$

$$
\text { area }=134 \mathrm{~cm}^{2}
$$

$$
\text { area }=136.5 \mathrm{~mm}^{2}
$$

2 Calculate the missing angle in each triangle giving your answers to 1 decimal place.
a

area $=75 \mathrm{~cm}^{2}$
b

$$
\text { area }=22.2 \mathrm{~m}^{2}
$$

e

$$
\text { area }=36 \mathrm{~mm}^{2}
$$

C

$$
\text { area }=175 \mathrm{~mm}^{2}
$$

3 A badge is made in the shape of a triangle and has area $46 \mathrm{~mm}^{2}$. Calculate the size of angle $M N P$ to the nearest degree.

4 The roof of a barn is made of a triangle as shown. Calculate the size of the missing side of the roof x if the cross-sectional area of the roof is $4.3 \mathrm{~m}^{2}$. Give your answer to 1 decimal place.

5 The two triangles have the same area. Calculate the length of the missing side shown giving your answer to 2 significant figures.

Answers

1) (a) 6.00 cm
2) (a) 42.0°
3) 45°
(b) 7.50 cm
(b) 110.0°
4) 3.8 m
(c) 11.00 cm
(c) 74.9°
5) 11 cm
(d) 12.21 km
(d) 80.1°
(e) 31.50 mm
(e) 63.5°
(f) 14.00 cm
(f) 43.0°
