Arc Length and Sector Area - Lesson 5

Arc Length and Sector Area
 (Angle and Radius)

LI

- Calculate radius and angle.

SC

- Arc length and Sector area formulae.

Example 1 (Working out Angle when told Arc Length and Radius)

$$
\begin{array}{ll}
& L=27 \mathrm{~cm}, r=13 \mathrm{~cm} \\
& L=\frac{\theta^{\circ}}{360^{\circ}} \times 2 \pi r \\
\therefore & 27=\frac{\theta^{\circ}}{360^{\circ}} \times 2 \times \pi \times 13 \\
\Rightarrow & \theta^{\circ}=\frac{26 \pi \theta^{\circ}}{360^{\circ}} \\
\Rightarrow & \left.\theta^{\circ}=118.99 \ldots 360^{\circ}\right) \\
\Rightarrow & \theta^{\circ}=119^{\circ}(\text { nearest degree })
\end{array}
$$

Example 2 (Working out Radius when told Arc Length and Angle)

$$
\begin{aligned}
& \text { Arc Length }=934 \mathrm{~cm} \\
& L=934 \mathrm{~cm}, \theta^{\circ}=105^{\circ} \\
& L=\frac{\theta^{\circ}}{360^{\circ}} \times 2 \pi r \\
& \therefore \quad 934=\frac{105^{\circ}}{360^{\circ}} \times 2 \pi r \\
& \Rightarrow \quad 934=\frac{210^{\circ} \pi r}{360^{\circ}} \\
& \Rightarrow \quad r=\frac{\left(934 \times 360^{\circ}\right)}{\left(210^{\circ} \times \pi\right)} \\
& \Rightarrow \quad r=509.65 \ldots \\
& \therefore \quad r=509.7 \mathrm{~cm} \text { (1 d. p.) }
\end{aligned}
$$

Example 3 (Working out Angle when told Sector Area and Radius)

$$
\begin{aligned}
& \text { A }=200 \mathrm{~cm}^{2}, r=14.7 \mathrm{~cm} \\
& \therefore \quad 200=\frac{\theta^{\circ}}{360^{\circ}} \times \pi \times 14.7^{2} \\
& \therefore \quad 200=\frac{216.09 \pi \theta^{\circ}}{360^{\circ}} \\
& \Rightarrow \quad \theta^{\circ}=\frac{\left(200 \times 360^{\circ}\right)}{\left(216.09^{\circ} \times \pi\right)} \\
& \Rightarrow \quad \theta^{\circ}=106.05 \ldots r^{\circ} \\
& \Rightarrow \quad \theta^{\circ}=106.1^{\circ}(1 \mathrm{~d} . \mathrm{p.})
\end{aligned}
$$

Example 4 (Working out Radius when told Sector Area and Angle)

$$
\begin{aligned}
& \text { Sector Area }=563 \mathrm{~cm}^{2} \\
& A=563 \mathrm{~cm}^{2}, \theta^{\circ}=121^{\circ} \\
& A=\frac{\theta^{\circ}}{360^{\circ}} \times \pi r^{2} \\
& \therefore \quad 563=\frac{121^{\circ}}{360^{\circ}} \times \pi r^{2} \\
& \Rightarrow \quad 563=\frac{121^{\circ} \pi r^{2}}{360^{\circ}} \\
& \Rightarrow \quad r^{2}=\frac{\left(563 \times 360^{\circ}\right)}{\left(121^{\circ} \times \pi\right)} \\
& \Rightarrow \quad r^{2}=533.182 \ldots \\
& \Rightarrow \quad r^{2}=\sqrt{533.182 \ldots} \\
& \Rightarrow \quad r=23.09 \ldots \\
& \therefore \quad r=23 \mathrm{~cm} \text { (nearest } \mathrm{cm} \text {) }
\end{aligned}
$$

1) A sector of a circle has a diameter of 36 cm and a sector area of $275 \mathrm{~cm}^{2}$. Find the sector angle (1 d.p.).
2) A sector of a circle has a sector angle of 61° and an arc length of 200.43 cm . Find the radius (2 d.p.).
3) A sector of a circle has a diameter of 20 cm and an arc length of 50 cm . Find the sector angle (nearest degree).
4) A sector of a circle has a sector angle of 231° and a sector area of $1000 \mathrm{~cm}^{2}$. Find the radius (3 s.f.).

Answers

1) A sector of a circle has a diameter of 36 cm and a sector area of $275 \mathrm{~cm}^{2}$. Find the sector angle ($1 \mathrm{~d} . \mathrm{p}$.). 97.3°
2) A sector of a circle has a sector angle of 61° and an arc length of 200.43 cm . Find the radius (2 d.p.). 188.26 cm
3) A sector of a circle has a diameter of 20 cm and an arc length of 50 cm . Find the sector angle (nearest degree). 286°
4) A sector of a circle has a sector angle of 231° and a sector area of $1000 \mathrm{~cm}^{2}$. Find the radius (3 s.f.). 22.3 cm
