2013 Applied Mathematics - Statistics

Advanced Higher

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Applied Mathematics - Statistics - Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Applied Mathematics - Statistics - Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

These principles describe the approach taken when marking Advanced Higher Applied Mathematics papers. For more detailed guidance please refer to the detailed Marking Instructions.

1 The main principle is to give credit for the skills demonstrated and the criteria met. Failure to have a correct method may not preclude a candidate gaining credit for their solution.

2 The answer to one part of a question, even if incorrect, can be accepted as a basis for subsequent dependent parts of the question.

3 The following are not penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- legitimate variation in numerical values / algebraic expressions.

4 Full credit will only be given where the solution contains appropriate working. Where the correct answer might be obtained by inspection or mentally, credit may be given.

5 Sometimes the method to be used in a particular question is explicitly stated; no credit will be given where a candidate obtains the correct answer by an alternative method.

6 Where the method to be used in a particular question is not explicitly stated in the question paper, full credit is available for an alternative valid method. (Some likely alternatives are included but these should not be assumed to be the only acceptable ones.)

In the detailed Marking Instructions which follow, marks are shown alongside the line for which they are awarded. There are two codes used M and E. The code M indicates a method mark, so in question B3, M1 means a method mark for understanding integration by parts. The code E refers to 'error', so in question B6(b), up to 2 marks can be awarded but 1 mark is lost for each error.

Section A (Statistics 1 and 2)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Solution \& Max \& Additional Guidance

\hline A \& 1 \& a

b \& | Give an example of both a random and a non-random method of sampling from a population and state an advantage and a disadvantage of each. |
| :--- |
| Simple random sampling is a random method of sampling a population, an advantage being that it ensures a representative sample. A disadvantage is that a list of all population members is required. |
| Quote sampling is a non-random method, an advantage being that no list of population members is required. A disadvantage is that the sample may not be representative of the population. |
| In chain-referral, or "snowball" sampling, used in social research, the researcher first identifies a member of the population of interest to include in the sample and to interview. The first member is then asked to refer the interviewer to a second member of the population for inclusion in the sample and so on. |
| State a disadvantage of this type of sampling. |
| A disadvantage is that the sample may not be representative eg a member of a population might not refer the interviewer to a population member with views that differ radically from his/her own. | \& 4 \&

\hline
\end{tabular}

Question			Solution	Max Mark	Additional Guidance
A	3		The standard score for a random variable X is defined as $Z=\frac{X-\mu}{\sigma}$ where $\mu=\mathbf{E}(\boldsymbol{X})$ and $\sigma=\mathbf{V}(\boldsymbol{X})$		
A	3	a	Use the laws of expectation and variance to determine the mean and standard deviation of Z. $\mathrm{E}(Z)=\mathrm{E}\left[\frac{1}{\sigma}(X-\mu)\right]=\frac{1}{\sigma}\left[(E(X)-E(\mu)]=\frac{1}{\sigma}(\mu-\mu)=0\right.$	3	
			$\mathrm{V}(Z)=\mathrm{V}\left[\frac{1}{\sigma}(X-\mu)\right]=\frac{1}{\sigma^{2}} \mathrm{~V}(X-\mu)=\frac{1}{\sigma^{2}} \mathrm{~V}(X)=\frac{\sigma^{2}}{\sigma^{2}}=1$ In national examinations in Mathematics and Music the mean marks were 50 and 65 respectively and the standard deviations 10 and 15 respectively. A student scored 60 in Mathematics and 80 in Music.		
A	3	b	Calculate this student's standard scores and comment. $\begin{aligned} & Z_{\text {Maths }}=\frac{60-50}{10}=1 \\ & Z_{\text {music }}=\frac{80-65}{15}=1 \end{aligned}$ In terms of standard scores the student's performance was equally good in the two subjects.	2	

Question			Solution	Max Mark	Additional Guidance
A	8	b	Using the variance of the random variable $X \sim B(n, p)$, obtain the standard deviation of the proportion of the success X / n, justifying your method. During a 30-day period of manufacturing In-Plane Switching displays for tablet computers, the proportion of nonconforming displays at final inspection was estimated to be $\mathbf{0 . 2 5}$. The proportions nonconforming in random samples of 50 taken daily over that period of $\mathbf{3 0}$ days are displayed in the control chart shown (circular symbols) $\text { Standard error of proportion }=\sqrt{\frac{p q}{n}}$ Confirm the values of the 3 -sigma control chart limits. At the end of the 30-day period, modifications were made to the manufacturing process. Data for the subsequent 10-day period are also displayed in the control chart (triangular symbols). Chart limits are given by $\begin{aligned} & p \pm 3 \sqrt{\frac{p q}{n}} \\ & 0.250 \pm 3 \sqrt{\frac{0 \cdot 25 \times 0 \cdot 75}{50}}=0.250 \pm 0.184 \\ & \text { or }(0 \cdot 066,0 \cdot 434) \end{aligned}$	3	

Question		Solution	Max Mark	Additional Guidance	
A	$\mathbf{8}$	c	Explain how the chart provides evidence of improvement. Following the modification, the proportion of nonconforming displays was estimated to be 0.10. The process manager wished to continue to monitor the process with a view to further reducing the proportion of nonconforming displays. The proportion of non-conforming displays appears to be much lower after the modifications. The occurrence of two points below the lower limit provides evidence of a reduction in the proportion nonconforming ie of improvement. d	$\mathbf{3}$	
Show that, with sample size 50, a negative value would now be obtained for the lower chart limit. Determine the minimum sample size that would yield a non-negative lower limit and state why such a lower limit is desirable. LCL $=0 \cdot 100-3 \sqrt{\frac{0 \cdot 1 \times 0 \cdot 9}{50}=0 \cdot 100-0 \cdot 127<0}$	$\mathbf{4}$				

Question			Solution	Max Mark	Additional Guidance
A	9		On the days between mid-January 2010 and mid-July 2010 when he cycled to work, Dr Jeremy Groves randomly allocated either his steel frame bicycle or his carbon frame bicycle for his journey. The time the bicycle was moving for the 27 -mile round trip was recorded using a bicycle computer. Analysis of his data was published in the Royal Statistical Society magazine Significance. The data is used with permission of Dr Groves who believed that the lighter carbon frame would lead to shorter times. He made 30 journeys on the steel bicycle and 26 on the carbon one and boxplot of the times are shown below		
A	9	a	Comment on the boxplots The display indicates that the median journey times are very similar suggesting that his belief is incorrect. The data were ranked with the shortest time being allocated rank 1 and the rank sum for the steel bicycle was 856.5		
A	9	b	Perform a formal test to evaluate the data for any evidence of a difference in median times $\begin{aligned} & \mathrm{H}_{\mathrm{o}}: \eta_{\text {Steel }}=\eta_{\text {Carbon }} \\ & \mathrm{H}_{1}: \eta_{\text {Steel }} \neq \eta_{\text {Carbon }} \\ & W=856 \cdot 5 \\ & \mathrm{E}(W)=\frac{1}{2} 30(30+26+1)=855 \\ & \mathrm{~V}(W)=\frac{1}{12} 30 \times 26(30+26+1)=60 \cdot 87^{2} \\ & z=\frac{W-\mathrm{E}(W)}{\sqrt{\mathrm{V}(W)}}=\frac{856 \cdot 5-0 \cdot 5-855}{60 \cdot 87}=0.02 \end{aligned}$ The critical value is $1.96>0.02$ so we accept H_{0} at the 5% level ie there is no evidence of a difference in median times	5	

Section B

Question		Sample Answer/Work	Max Mark	Criteria for Mark
B	1	$\begin{aligned} & \text { Given that } y=\sin \left(e^{5 x}\right) \text {, find } \frac{\mathbf{d y}}{\mathbf{d x}} \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=\cos e^{5 x} \times \frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{5 x}\right) \\ & =\cos e^{5 x} \times 5 e^{5 x} \\ & =5 e^{5 x} \cos e^{5 x} \end{aligned}$	2	1 First application of chain rule. 1 Second application of chain rule.
Notes:				

Notes:

3.1 Treat omission of " $+c$ " as bad form: do not penalise.
3.2 Negative indices for x equally acceptable.

Question			Sample Answer/Work	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Criteria for Mark
B	4	a	State the results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{3}$ in terms of n. Hence show that $\begin{aligned} & \sum_{\mathbf{r}=\mathbf{1}}^{\mathbf{n}}\left(\mathbf{r}^{\mathbf{3}}-\mathbf{3 r}\right)=\frac{\mathbf{n}(\mathbf{n}+\mathbf{1})(\mathbf{n}-\mathbf{2})(\mathbf{n}+\mathbf{3})}{\mathbf{4}} \\ & \sum_{r=1}^{n} r=\frac{n(n+1)}{2} \\ & \begin{aligned} & \sum_{r=1}^{n}\left(r^{3}-3 r\right)=\sum_{r=1}^{n} r^{3}-3 \sum_{r=1}^{n} r \\ & r^{3}=\frac{n^{2}(n+1)^{2}}{4} \\ &=\frac{n^{2}(n+1)^{2}}{4}-\frac{3 n(n+1)}{2} \\ &=\frac{n(n+1)}{4}[n(n+1)-6] \\ &=\frac{n}{4}(n+1)\left(n^{2}+n-6\right) \end{aligned} \end{aligned}$ Note: This or equivalent intermediate algebra required for this mark.	4	1 Both formulae correct. 1 Correct separation. 1 Substitution. 1 Algebra correct.
Notes:					

Question			Sample Answer/Work	Max Mark	Criteria for Mark
B	4 4	b	(cont) Use the above result to evaluate $\sum_{r=5}^{15}\left(\mathbf{r}^{3}-3 r\right)$ $\begin{aligned} \sum_{\mathbf{r}=5}^{15}\left(\mathbf{r}^{3}-\mathbf{3 r}\right) & =\sum_{\mathbf{r}=1}^{15}\left(\mathbf{r}^{3}-\mathbf{3 r}\right)-\sum_{\mathbf{r}=1}^{4}\left(\mathbf{r}^{3}-\mathbf{3 r}\right) \\ & =\frac{15 \times 16 \times 18 \times 13}{4}-\frac{4 \times 5 \times 2 \times 7}{4} \\ & =14040-70 \\ & =13970 \end{aligned}$	2	1 Correct limits. 1 Correct evaluation.
Notes:					

Notes:

5.3 Any constant acceptable. Therefore, term containing constant can be positive or negative.
$5.4 \quad 6-2 y=e^{-x^{2}-c}$ a valid alternative for this mark.
5.5 Either of last two lines valid for award of final mark.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Sample Answer/Work \& Max Mark \& Criteria for Mark \\
\hline \begin{tabular}{|c}
B \\
\\
\\
\\
B
\end{tabular} \& 6

6 \& a \& \begin{tabular}{l}
The cycloid curve below is defined by the parametric equations
$$
x=t-\sin t, y=1-\cos t
$$

Find $\frac{d y}{d x}$ in terms of t
$$
\begin{aligned}
& \frac{d y}{d t}=\sin t, \frac{d x}{d t}=1-\operatorname{cost} t \\
& \frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t}=\frac{\sin t}{1-\cos t}
\end{aligned}
$$

 \& 2 \&

1 Appropriate differentiation.

1 Correct use.
\end{tabular}

\hline \multicolumn{6}{|l|}{Notes:}

\hline
\end{tabular}

Question			Sample Answer/Work	Max	Criteria for Mark
B	6	c	A particle follows the path of the cycloid where t is the time elapsed since the particle's motion commenced. Calculate the speed of the particle when $t=\frac{\pi}{3}$. $\text { Speed }=\sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}}=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=1$	2	1 Correct formula. 1 Applies correct values to obtain a speed of 1 .
Notes:					

