2007 Applied Mathematics

Advanced Higher - Numerical Analysis

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles

These principles describe the approach taken when marking Advanced Higher Mathematics papers. For more detailed guidance please refer to the detailed Marking Instructions.

1 The main principle is to give credit for the skills demonstrated and the criteria met. Failure to have a correct method may not preclude a candidate gaining credit for their solution.

2 The answer to one part of a question, even if incorrect, can be accepted as a basis for subsequent dependent parts of the question.

3 The following are not penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- legitimate variation in numerical values / algebraic expressions.

4 Full credit will only be given where the solution contains appropriate working. Where the correct answer might be obtained by inspection or mentally, credit may be given.

5 Sometimes the method to be used in a particular question is explicitly stated; no credit will be given where a candidate obtains the correct answer by an alternative method.

6 Where the method to be used in a particular question is not explicitly stated in the question paper, full credit is available for an alternative valid method. (Some likely alternatives are included but these should not be assumed to be the only acceptable ones.)

In the detailed Marking Instructions which follow, marks are shown alongside the line for which they are awarded. There are two codes used, M and E . M indicates a method mark, so in question B6, M1 means a method mark for using the partial fractions to work out the are. E is shorthand for error. For example, 2E1, means that a correct answer is awarded 2 marks but that 1 mark is deducted for each error.

Advanced Higher Applied Mathematics 2007

Section A - Numerical Analysis

A1.

$$
f(x)=\ln (7-3 x) \quad f^{\prime}(x)=\frac{-3}{7-3 x} \quad f^{\prime \prime}(x)=\frac{-9}{(7-3 x)^{2}}
$$

Taylor polynomial is $p(2+h)=0-3 h-\frac{9}{2} h^{2}$.
For $f(1.97), h=-0.03$ and
$p(1.97)=0+0.09-0.00405=0.08595$.
$f(x)$ should be fairly sensitive to small changes in x as coefficients are >1.

A2. $\quad L(1 \cdot 3)=\frac{(1 \cdot 3-0 \cdot 7)(1 \cdot 3-1 \cdot 0)(1 \cdot 3-2 \cdot 0)}{(0 \cdot 0-0 \cdot 7)(0 \cdot 0-1 \cdot 0)(0 \cdot 0-2 \cdot 0)} 2 \cdot 716+\frac{(1 \cdot 3-0 \cdot 0)(1 \cdot 3-1 \cdot 0)(1 \cdot 3-2 \cdot 0)}{(0 \cdot 7-0 \cdot 0)(0 \cdot 7-1 \cdot 0)(0 \cdot 7-2 \cdot 0)} 2 \cdot 315$

$$
+\frac{(1 \cdot 3-0 \cdot 0)(1 \cdot 3-0 \cdot 7)(1 \cdot 3-2 \cdot 0)}{(1 \cdot 0-0 \cdot 0)(1 \cdot 0-0 \cdot 7)(1 \cdot 0-2 \cdot 0)} 2 \cdot 103+\frac{(1 \cdot 3-0 \cdot 0)(1 \cdot 3-0 \cdot 7)(1 \cdot 3-1 \cdot 0)}{(2 \cdot 0-0 \cdot 0)(2 \cdot 0-0 \cdot 7)(2 \cdot 0-1 \cdot 0)} 2 \cdot 846 \quad 2
$$

$$
\begin{equation*}
=0 \cdot 244-2 \cdot 315+3 \cdot 827+0 \cdot 256=2 \cdot 012 \tag{1}
\end{equation*}
$$

Not suitable for Newton interpolation as data points are not equally
spaced.

A3. Second order relation.

$$
\begin{array}{ll}
2 a_{2}=4-3+3 & a_{2}=2 \\
2 a_{3}=12-2+3=13 & a_{3}=13 / 2 \\
2 a_{4}=8-13 / 2+3=9 / 2 & a_{4}=9 / 4
\end{array}
$$

For fixed point, $2 a=4 a-a+3$ so fixed point $a=-3$.

A4. (a) Difference table is:

i	x	$f(x)$	diff1	diff2	diff3
0	$2 \cdot 0$	$2 \cdot 317$	-185	27	-4
1	$2 \cdot 5$	$2 \cdot 132$	-158	23	-6
2	$3 \cdot 0$	$1 \cdot 974$	-135	17	
3	$3 \cdot 5$	$1 \cdot 839$	-118		
4	$4 \cdot 0$	$1 \cdot 721$			

(b) $p=0 \cdot 4$

$$
\begin{aligned}
f(3.2) & =1.974+0.4(-0.135)+\frac{(0.4)(-0.6)}{2}(0.017) \\
& =1.974-0.054-0.002=1.918
\end{aligned}
$$

$$
\text { (or, with } p=2 \cdot 4,2 \cdot 317-0.440+0 \cdot 045)
$$

A5. In diagonally dominant form, rewritten equations are:

$$
\begin{align*}
& x_{1}=\left(5 \cdot 1+0 \cdot 2 x_{2}-0 \cdot 3 x_{3}\right) / 7 \\
& x_{2}=\left(2 \cdot 5+0 \cdot 3 x_{1}\right) / 5 \\
& x_{3}=\left(0 \cdot 4-0 \cdot 2 x_{1}+0 \cdot 1 x_{2}\right) / 4 \tag{1}
\end{align*}
$$

This is necessary so that the divisor is larger than the x_{i} coefficients in the numerator; as a result, convergence can be expected.
Jacobi: $\quad x_{1}=0.729, x_{2}=0.5 ; \quad x_{3}=0.1$
Gauss-Seidel: $\quad x_{1}=0.729 ; \quad x_{2}=0.544 ; \quad x_{3}=0.077$
1

Jacobi uses values of x_{i} from the previous iteration:
Gauss-Seidel uses the most recent values of x_{i}.

A6. $\quad f(x)=(((0 \cdot 75 x+2 \cdot 16) x) x-1 \cdot 04) x+0 \cdot 34$ and $f(1 \cdot 7)=15 \cdot 448$.
$f(x)_{\max }=(((0.755 x+2 \cdot 165) x) x-1 \cdot 035) x+0 \cdot 345$;
$f(1.7)_{\max }=15.528$
Maximum absolute error $=15 \cdot 528-15 \cdot 448=0 \cdot 080$
Maximum relative error $=\frac{0.080}{15 \cdot 448} \times 100 \%=0.52 \%$.
A7. (a) Taylor expansion gives $f(a)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(a-x_{0}\right)+\ldots$ and $f(a)=0$.
Approximation to a is x_{1}, so that $f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(a-x_{0}\right)=0$.
i.e. $x_{1}=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)$
and in general $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$
$f(0)=1 ; f(1)=-1 \cdot 09$. Change of sign means at least one root in interval.
$f^{\prime}(x)=2 \cos 2 x+3 x^{2}-4$.
$x_{0}=0.5 ; x_{1}=0.5-(-0 \cdot 0335) /(-2 \cdot 1694)=0 \cdot 4846$,
$x_{2}=0.4846$. Hence root at $0 \cdot 485$ (3D).
(b)

For bisection, $\quad f(1.9)=-0.353 ; \quad f(2)=0.243$

$$
f(1.95)=-0.073
$$

Hence root lies in [1.95, 1.975].
Using n steps, to reduce interval width by factor of 100 we require $2^{n}>100, n=7$
So 5 more applications are required.

A8. Gaussian elimination table is:

				sum	
	$(6 \cdot 3)$	$2 \cdot 9$	$-3 \cdot 1$	$8 \cdot 8$	$14 \cdot 9$
	$1 \cdot 4$	$-0 \cdot 7$	$2 \cdot 4$	$12 \cdot 2$	$15 \cdot 3$
	0	$(3 \cdot 7)$	$1 \cdot 9$	$5 \cdot 1$	$10 \cdot 7$
$R_{2}-1 \cdot 4 R_{1} / 6 \cdot 3$	0	$-1 \cdot 344$	$3 \cdot 089$	$10 \cdot 244$	$11 \cdot 989$
$R_{4}+1 \cdot 344 R_{3} / 3 \cdot 7$	0	0	$3 \cdot 779$	$12 \cdot 097$	$15 \cdot 876$

$$
\begin{array}{llll}
x_{3}=3 \cdot 201 ; & x_{2}=-0 \cdot 265 ; & & x_{1}=3 \cdot 094 \\
x_{1}=3 \cdot 1 & x_{2}=-0 \cdot 3 & x_{3}=3 \cdot 2 & \mathbf{1} \\
\hline
\end{array}
$$

There is no reason to expect ill-conditioning since the new elements are comparable in size to the original coefficients.

Guard figures are used to ensure that rounding errors are confined to the guard figures and do not affect the final answers in their rounded form.

A9. Simpson's rule calculation is:

x	$f(x)$	m_{4}	$m_{4} f_{1}(x)$	m_{2}	$m_{2} f_{2}(x)$
0	0.7846	1	0.7846	1	0.7846
0.5	0.5317	4	2.1268		
1	0.3478	2	0.6956	4	1.3912
1.5	0.2235	4	0.8940		
2	0.3075	1	0.3075	1	0.3075
			4.8085		2.4833

Hence $I_{4}=4.8085 \times 0.5 / 3=0.8014$ and $I_{2}=2 \cdot 4833 / 3=0.8278$
1

Difference table is:

-253	69	-9	157	Hence $D=0 \cdot 157$
-184	60	148		
-124	208			

84
2
\mid max truncation error $\mid=2 \times 0.157 / 180 \approx 0.0017$
Hence $I_{4}=0 \cdot 80$ to suitable accuracy.
With n strips and step size $2 h$, the Taylor series for expansion of an integral approximated by Simpson's rule (with principal truncation error of $O\left(h^{4}\right)$ is
$I=I_{n}+C(2 h)^{4}+D(2 h)^{6}+\ldots=I_{n}+16 C h^{4}+\ldots$
With $2 n$ strips and step size h, we have $I=I_{2 n}+C h^{4}+D h^{6}+\ldots$
$16(2)-(1)$ gives $15 I=16 I_{2 n}-I_{n}+O\left(h^{6}\right)$
i.e. $I \approx\left(16 I_{2 n}-I_{n}\right) / 15=I_{2 n}+\left(I_{2 n}-I_{n}\right) / 15$

Richardson estimate is
$I_{R}=0.8014+(0.8014-0.8278) / 15=0.7996$
or 0.800 to suitable accuracy

A10.

y_{c} is determined using the average of the gradients at $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{p}\right)$.

Predictor-corrector calculation (with one corrector application) is:

x	y	$y^{\prime}=e^{-y}\left(x^{2}-2 y\right)$	y_{p}	y_{p}^{\prime}	$\frac{1}{2} h\left(y^{\prime}+y_{p}^{\prime}\right)$
0	1	-0.7358	0.9264	-0.7297	-0.0733
$0 \cdot 1$	0.9267	-0.7297	0.8537	-0.7100	-0.0720
0.2	0.8547				

Section B - Mathematics for Applied Mathematics

B1.

$$
\begin{align*}
\int_{0}^{\pi / 6} x \sin 3 x d x & =\left[x \int \sin 3 x d x-\int 1 \cdot\left(-\frac{1}{3} \cos 3 x\right)\right]_{0}^{\pi / 6} \tag{2E1}\\
& =\left[x\left(-\frac{1}{3} \cos 3 x\right)+\frac{1}{9} \sin 3 x\right]_{0}^{\pi / 6} \tag{1}\\
& =-\frac{\pi}{18} \cos \frac{\pi}{2}+\frac{1}{9} \sin \frac{\pi}{2}-(0+0) \tag{1}\\
& =\frac{1}{9} \tag{1}
\end{align*}
$$

B2.

$$
\begin{array}{rlr}
\left(x^{3}-\frac{2}{x}\right)^{4} & =\left(x^{3}\right)^{4}+4\left(x^{3}\right)^{3}\left(-\frac{2}{x}\right)+6\left(x^{3}\right)^{2}\left(-\frac{2}{x}\right)^{2}+4 x^{3}\left(-\frac{2}{x}\right)^{3}+\left(-\frac{2}{x}\right)^{4} & \text { 2E1 } \\
& =x^{12}-8 x^{8}+24 x^{4}-32+\frac{16}{x^{4}} & \text { 2E1 }
\end{array}
$$

B3.

$$
\begin{aligned}
& x=\frac{t}{t^{2}+1} \Rightarrow \frac{d x}{d t}=\frac{1\left(t^{2}+1\right)-t(2 t)}{\left(t^{2}+1\right)^{2}}=\frac{1-t^{2}}{\left(t^{2}+1\right)^{2}} \\
& y=\frac{t-1}{t^{2}+1} \Rightarrow \frac{d y}{d t}=\frac{1\left(t^{2}+1\right)-(t-1)(2 t)}{\left(t^{2}+1\right)^{2}}=\frac{1+2 t-t^{2}}{\left(t^{2}+1\right)^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{1+2 t-t^{2}}{\left(t^{2}+t^{2}\right.}}{\frac{1-t^{2}}{\left(t^{2}+1\right)^{2}}} \\
&=\frac{1+2 t-t^{2}}{1-t^{2}}
\end{aligned}
$$

B4.

$$
\begin{align*}
A & =\left(\begin{array}{cc}
\lambda & 2 \\
2 & \lambda-3
\end{array}\right) \\
\operatorname{det} A & =\lambda(\lambda-3)-4 \tag{1}
\end{align*}
$$

A matrix is singular when its determinant is 0 .

$$
\begin{array}{r}
\lambda^{2}-3 \lambda-4=0 \\
(\lambda+1)(\lambda-4)=0 \\
\lambda=-1 \text { or } \lambda=4 \\
\text { When } \lambda=3, A=\left(\begin{array}{ll}
3 & 2 \\
2 & 0
\end{array}\right) \text { so } A^{-1}=\frac{1}{-4}\left(\begin{array}{cc}
0 & -2 \\
-2 & 3
\end{array}\right) \text {. }
\end{array}
$$

B5.

$$
\begin{array}{r}
x \frac{d y}{d x}-y=x^{2} e^{x} \\
\frac{d y}{d x}-\frac{1}{x} y=x e^{x} \tag{1}
\end{array}
$$

Integrating factor:

$$
\begin{gather*}
\exp \left(\int \frac{-1}{x} d x\right) \tag{1}\\
=\exp (-\ln x)=x^{-1} \tag{1}\\
\frac{d}{d x}\left(\frac{y}{x}\right)=e^{x} \\
\frac{y}{x}=\int e^{x} d x=e^{x}+c \\
\therefore \quad y=x\left(e^{x}+c\right) \\
y=2 \text { when } x=1 \Rightarrow 2=e+c \\
\Rightarrow y=x\left(e^{x}-e+2\right)
\end{gather*}
$$

B6.

$$
\begin{array}{cc}
\frac{8}{x(x+2)(x+4)}=\frac{A}{x}+\frac{B}{x+2}+\frac{C}{x+4} & \mathbf{1} \\
8=A(x+2)(x+4)+B x(x+4)+C x(x+2) & \mathbf{1} \\
x=0 \Rightarrow 8 A=8 \Rightarrow A=1 & \mathbf{1} \\
x=-2 \Rightarrow-4 B=8 \Rightarrow B=-2 \\
x=-4 \Rightarrow 8 C=8 \Rightarrow C=1 \\
\frac{8}{x(x+2)(x+4)}=\frac{1}{x}+\frac{-2}{x+2}+\frac{1}{x+4} \\
\text { Area }=\int_{1}^{2}\left(\frac{1}{x}+\frac{-2}{x+2}+\frac{1}{x+4}\right) d x \\
\quad=[\ln x-2 \ln (x+2)+\ln (x+4)]_{1}^{2} \\
\quad=\left[\ln \frac{x(x+4)}{(x+2)^{2}}\right]_{1}^{2} \\
\quad=\ln \frac{12}{16}-\ln \frac{5}{9}=\ln \frac{12}{16} \times \frac{9}{5}=\ln \frac{27}{20}
\end{array}
$$

