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General Marking Principles

These principles describe the approach taken when marking Advanced Higher
Mathematics papers.  For more detailed guidance please refer to the detailed Marking
Instructions.

1 The main principle is to give credit for the skills demonstrated and the criteria
met.  Failure to have a correct method may not preclude a candidate gaining credit
for their solution.

2 The answer to one part of a question, even if incorrect, is accepted as a basis for
subsequent dependent parts of the question.

3 The following are not penalised:

• working subsequent to a correct answer (unless it provides firm evidence
that the requirements of the question have not been met)

• legitimate variation in numerical values / algebraic expressions.

4 Full credit will only be given where the solution contains appropriate working.
Where the correct answer might be obtained by inspection or mentally, credit may
be given.

5 Sometimes the method to be used in a particular question is explicitly stated; no
credit will be given where a candidate obtains the correct answer by an alternative
method.

6 Where the method to be used in a particular question is not explicitly stated, full
credit will be given for an alternative valid method.

In the detailed Marking Instructions which follow, marks are shown alongside the line
for which they are awarded.  There are two codes used, M and E.  M indicates a
method mark, so in question 1, 1M, 1, 1 means a method mark for the product rule
(and then a mark for each of the terms).  E is shorthand for error.  So for example,
2E1, means that a correct answer is awarded 2 marks but that 1 mark is deducted for
each error.
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Advanced Higher Applied Mathematics 2006
Section A − Numerical Analysis

A1. L(x) =
(x − 3)(x − 4)
(1 − 3)(1 − 4)

(−0·324) +
(x − 1)(x − 4)
(3 − 1)(3 − 4)

(0·683) +
(x − 1)(x − 3)
(4 − 1)(4 − 3)

(0·914)

=
(x2 − 7x + 12)

6
(−0·324) −

(x2 − 5x + 4)
2

(0·683) +
(x2 − 4x + 3)

3
(0·914)

= −0·091x2 + 0·867x − 1·100. 4

A2. f (x) = cos x f ′ (x) = − sin x f ″ (x) = − cos x f ′′′ (x) = sin x

Taylor polynomial is:

p (π
3

+ h) = cos
π
3

− sin
π
3

 h − cos
π
3

 
h2

2
+ sin

π
3

  
h3

6

= 0·5 − 0·8660h − 0·25h2 + 0·1443h3. 2

For , ;
. 2

cos 62° h = π / 90
p(π /3 + π/90) = 0·5 − 0·03023 − 0·00030 = 0·4695

Principal truncation error term is .( 3
12 ) ( π

90)3

= 0·00001

Hence a suitable accuracy for second degree approximation is 0·4695. 2

A3. Let quadratic through , ,  be
.  Then

(x0, f (x0)) (x1, f (x1)) (x2, f (x2))
y = A0 + A1 (x − x0) + A2 (x − x0) (x − x1)

;f 0 = A0 ;f 1 = A0 + A1h f 2 = A0 + 2A1h + 2A2h
2

and so

A1 =
f 1 − f 0

h
=

�f 0

h
;  A2 =

f 2 − 2f 1 + f 0

2h2
=

�2f 0

2h2
.

Thus

y = f 0 +
x − x0

h
 �f 0 +

(x − x0) (x − x1)
2h2

 �2f 0.

Setting , where , givesx = x0 + ph 0 < p < 1

y = f 0 + p�f 0 + ½p (p − 1) �2f 0. 5

(Can also be done by an operator expansion of .)(1 + �)p

A4. (a) Maximum rounding error in  is . 1�3f 0 23 × 0·00005 = 0·0004

(b) . 1�2f 1 = 0·0029

(c) Differences are approximately constant within rounding error. 1

(d) ;  p = 0·8 f (3·16)

= 1·0342 + 0·8(0·0118) +
(0·8)(−0·2)

2
 (0·0037) +

(0·8)(−0·2)(−1·2)
6

(−0·0008)

= 1·0342 + 0·0094 − 0·0003 − 0·0000 = 1·0433. 3
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A5. Jacobi table is: x1 x2 x3

0 0 0
0·53 0·412 0·749
0·496 0·398 0·738
0·496 0·400 0·739

Hence (2 decimal places)  ;  ;  . 4x1 = 0·50 x2 = 0·40 x3 = 0·74

A6. Synthetic division table is: 1 5 −2 2·3 / x − 0·8
0·8 4·64 2·112

1 5·8 2·64 4·412

Hence  and . 3Q (x) = x2 + 5·8x + 2·64 R = 4·412

Since  increases on [0.75, 0.85] the largest  occurs when
.

f (x) R
x = 0·85

  3Rmax = 0·853 + 5 × 0·852 − 2 × 0·85 + 2·35 = 4·88 (Rmin = 4·08)

A7. Predictor-corrector calculation (with one corrector application) is:

x y y′ = (2x − y2)e−x yP y′P 1
2h(y′ + y′P)

1 1 0·3679 1·0368 0·3745 0·0371
1·1 1·0371 0·3743 1·0745 0·3751 0·0375
1·2 1·0746

6

A8. Tableau is:

( )4·6 0 −3·614 1·170 −0·326 0
0 5·213 1·270 −0·522 1 0
0 0 4·568 −0·679 0·009 1

= ( ) 
4·6 0 0 0·633 −0·319 0·791
0 5·213 0 −0·333 0·997 −0·278
0 0 4·568 −0·679 0·009 1

(R1 + 3·614R3/4·568)
(R2 − 1·270R3/4·568)

= ( ) 
1 0 0 0·138 −0·069 0·172
0 1 0 −0·064 0·191 −0·053
0 0 1 −0·149 0·002 0·219

(dividing by diagonal elements)

Hence . 6A−1 = ( )0·14 −0·07 0·17
−0·06 0·19 −0·05
−0·15 0·00 0·22

Ill-conditioning means that a small change in the element(s) of  is
likely to cause a large change in the inverse matrix.  The strong
diagonal dominance of the tableau suggests that ill-conditioning is
unlikely here. 3

A

Partial pivoting ensures that all row operations involve multiplying by
numbers less than 1 so that instabilities are not magnified. 1
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A9. Taylor expansion gives   and .f (a) = f (x0) + f ′ (x0)(a − x0) +  … f (a) = 0
Approximation to  is , so that .a x1 f (x0) + f ′ (x0) (x1 − x0) = 0

i.e.  x1 = x0 −
f (x0)
f ′ (x0)

and in general . 3xn + 1 = xn −
f (xn)
f ′ (xn)

 and .  .f (x) = x3 − 4x + 2 f ′ (x) = 3x2 − 4 x0 = −2
;  ;  .x1 = −2 − 2 / 8 = −2·25 x2 = −2·215 x3 = −2·214

Root is −2·21 (2 decimal places). 2

For ,  when , so
probably suitable. 1

g (x) = (x3 + 2) / 4 g′ (x) = 3x2 / 4 << 1 x = 0·5

For , iterates are ;  ;  x0 = 0·5 x1 = 0·531 x2 = 0·537 x3 = 0·539
giving root at 0·54 (2 decimal places). 2

For bisection, ;f (1·2) = −1·072 f (2) = 2
f (1·6) = −0·304

;f (1·8) = 0·632
f (1·7) = 0·113

Hence root lies in [1·6, 1·7]. 2

A10. (a) Simpson's rule calculation is:

x f (x) m1 m1f (x) m2 m2f (x)
1 0·6931 1 0·6931 1 0·6931
1·5 2·0617 4 8·2468
2 4·3944 4 17·5776 2 8·7888
2·5 7·8298 4 31·3192
3 12·4766 1 12·4766 1 12·4766

30·7473 61·5245

Hence I2 = 30·7473 × 1 / 3 = 10·2491
and I4 = 61·5245 × 0·5 / 3 = 10·2541

4
(b) ;  .f (iv) (1) = 1·375 f (iv) (3) = 0·211

Maximum truncation error 2≈ 1·375 × 0·54 / 180 = 0·0010.
Hence suitable estimate is . 1I4 = 10·25

(c) With  strips and step size , the Taylor series for expansion of
an integral approximated by Simpson's rule (with principal
truncation error of ) is

n 2h

O (h4)
I = In + C (2h)4 + D (2h)6 +  …

= In + 16Ch4 +  … (1)
With  strips and step size , we have2n h

I = I2n + Ch4 + Dh6 +  … (2)
 gives 16 × (2) − (1) 15I = 16I2n − In + O (h6)

i.e. . 3I ≈ (16I2n − In) / 15 = I2n + (I2n − In) / 15

I = 10·2541 + (10·2541 − 10·2491) / 15 = 10·2544

or 10·254 to suitable accuracy. 1
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Section B − Mathematics for Applied Mathematics

B1.
→

1 1 0 1 0 0
2 3 1 0 1 0
2 2 1 0 0 1

1 1 0 1 0 0
0 1 1 −2 1 0
0 0 1 −2 0 1

→
1 1 0 1 0 0
0 1 0 0 1 −1
0 0 1 −2 0 1

→
1 0 0 1 −1 1
0 1 0 0 1 −1
0 0 1 −2 0 1

M1,

2E1

So  A−1 = ( ) .
1 −1 1
0 1 −1

−2 0 1

Other valid methods of obtaining  will be accepted.A−1

x + y = 1
2x + 3y + z = 2
2x + 2y + z = 1

A( ) = ( ) ⇒ ( ) = A−1( ) = ( )( ) = ( ),
x
y
z

1
2
1

x
y
z

1
2
1

1 −1 1
0 1 −1

−2 0 1

1
2
1

0
1

−1
M1,1

so , , .x = 0 y = 1 z = −1

B2. y = ln (1 + sin x)
dy

dx
=

cos x

1 + sin x
M1,1

so  
d2y

dx2
=

(1 + sin x) (− sin x) − cos x cos x

(1 + sin x)2
M1,1

=
− sin x − 1
(1 + sin x)2

1

=
−1

(1 + sin x)
.

B3. Sn = 1
6n (n + 1) (2n + 1) 1

 S2n + 1 = 1
6 (2n + 1) (2n + 2) (4n + 3) 1

22 + 42 +  …  + (2n)2 = 4 (12 + 22 +  …  + n2)
= 2

3n (n + 1) (2n + 1) 1
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B4. cos2 y 
dy

dx
= y

∫
dy

y
= ∫ sec2 x  dx M1

so  ln y = tan x + c. 1,1
When ,  giving . 1y = 2 x = 0 c = ln 2
Hence , i.e. ln y − ln 2 = tan x ln 1

2y = tan x

⇒ y = 2etan x. 1

B5.  so 11 + x2 = u ⇒ x dx = 1
2 du

∫
x3

1 + x2
 dx = ∫

(u − 1)
u

 
1
2

 du 1

=
1
2 ∫ (u1/2 − u−1/2)  du 1

=
1
3

u3/2 − u1/2 + c 1

=
1
3

(1 + x2)3/2
− (1 + x2)1/2

+ c 1

 =
1
3

(x2 − 2) 1 + x2 + c

B6. (a) ∫
1
0 x e2x dx = [x ∫ e2x dx − ∫ 1

2 e2x dx] 1
 0 M1, 1

= [ 1
2 x e2x − 1

4 e2x] 1
 0 1

= 1
2 e2 − 1

4 e2 + 1
4 = 1

4 (e2 + 1) 1

(b) ∫
1
0 x2 e2x dx = [x2 ∫ e2x dx] 1

 0 − ∫
1
0 2x.1

2 e2x dx 1

= [ 1
2x2e2x] 1

 0 − ∫
1
0 x ex dx 1

= [ 1
2 e2 − 0] − 1

4 (e2 + 1) = 1
4 (e2 − 1) 1

(c) ∫
1

0
(3x2 + 2x)  e2x dx = 3 ∫

1

0
x2 e2x dx + 2 ∫

1

0
x e2x dx 1

= 3
4 (e2 − 1) + 2

4 (e2 + 1) 1

= 1
4 (5e2 − 1)

[END OF MARKING INSTRUCTIONS]
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