2014 Applied Mathematics - Mechanics

Advanced Higher

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Applied Mathematics-Mechanics Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Applied Mathematics - Mechanics - Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

These principles describe the approach taken when marking Advanced Higher Applied Mathematics papers. For more detailed guidance please refer to the detailed Marking Instructions.

1 The main principle is to give credit for the skills demonstrated and the criteria met. Failure to have a correct method may not preclude a candidate gaining credit for their solution.

2 The answer to one part of a question, even if incorrect, can be accepted as a basis for subsequent dependent parts of the question.

3 The following are not penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- legitimate variation in numerical values/algebraic expressions.

4 Full credit will only be given where the solution contains appropriate working. Where the correct answer might be obtained by inspection or mentally, credit may be given.

5 Sometimes the method to be used in a particular question is explicitly stated; no credit will be given where a candidate obtains the correct answer by an alternative method.

6 Where the method to be used in a particular question is not explicitly stated in the question paper, full credit is available for an alternative valid method. (Some likely alternatives are included but these should not be assumed to be the only acceptable ones.)

Part Two: Marking Instructions for each Question

Section A

	est	Expected Answer(s)	Max Mark	Additional Guidance
A	2	$\begin{aligned} & T=\frac{2 \pi}{\omega} \Rightarrow \frac{2 \pi}{\omega}=\frac{14 \pi}{5} \Rightarrow \omega=\frac{5}{7} \\ & v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \\ & 2 \cdot 5^{2}=\frac{25}{49}\left(a^{2}-1 \cdot 2^{2}\right) \\ & \frac{2 \cdot 5^{2} \times 49}{25}+1 \cdot 2^{2}=a^{2} \\ & a=3 \cdot 7 \text { metres } \\ & x=A \sin \omega t \\ & 1 \cdot 2=3 \cdot 7 \sin \left(\frac{5 t}{7}\right) \\ & t=0.46 \text { seconds } \end{aligned}$	4	E1:Value of ω M1: Correct formula for velocity and amplitude and correct substitution E1: Value for amplitude M1: Use of formula to find displacement and answer

Qu	sti		Expected Answer(s)	Max Mark	Additional Guidance
A	3	(i) (ii)	$\begin{aligned} W & =\int_{0}^{200}(F-500) d x \\ & =\int_{0}^{200}(3000-15 x-500) d x \\ & =\left[2500 x-\frac{15 x^{2}}{2}\right]_{0}^{200} \\ & =200000 \mathrm{~J}=200 \mathrm{~kJ} \end{aligned}$ Work- Energy Principle: $\begin{aligned} & W=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2} \\ & 200000=\frac{1}{2} \times 700 v^{2} \\ & v=23.9 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Alternative solution for (ii) $\begin{aligned} & F=m a \Rightarrow a=\frac{F}{m} \\ & v \frac{d v}{d x}=\frac{1}{700} \int^{(2500-15 x) d x} \\ & F=m a \\ & v \frac{d v}{d x}=\frac{1}{700}(2500-15 x) \\ & \int v d v=\frac{1}{700} \int(2500-15 x) d x \\ & \frac{v^{2}}{2}=\frac{1}{700}\left[2500-\frac{15 x^{2}}{2}\right]_{0}^{200} \\ & v=23.9 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1: Method of finding work done $\int F c d x$ (with limits or calculation of constant included later) E1: Correct answer M1: Use of Work Energy Principle and substitution E1: Correct calculation of speed M1: Use of correct differential equation and substitution E1: Correct calculation of speed

	est	Expected Answer(s)	Max Mark	Additional Guidance
A	4	$\begin{aligned} & \uparrow \text { Equilibrium } \quad 2 T \cos 30^{\circ}+T \cos 50^{\circ}=2 g \\ & 2 T \cos 30^{\circ}+T \cos 50^{\circ}=2 g \\ & T=\frac{2 g}{2 \cos 30^{\circ}+\cos 50^{\circ}}=8.25 N \\ & 2 T=16 \cdot 5 N \\ & \rightarrow F=\frac{m v^{2}}{r} \\ & 2 T \sin 30^{\circ}+T \sin 50^{\circ}=\frac{2 v^{2}}{r} \\ & \tan 50^{\circ}=\frac{r}{0 \cdot 3} \quad r=0.358 \\ & 2 T \sin 30^{\circ}+T \sin 50^{\circ}=\frac{2 v^{2}}{0.358} \\ & 2 v^{2}=0.358\left(16.5 \times \frac{1}{2}+8.25 \times 0.766\right) \\ & v=1.61 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	6	M1: Consider equilibrium involving both tensions and weight E1: Correct substitution of components E1: Using conditions to find tension M1: Horizontal use of $F=\frac{m v^{2}}{r}$ (Consistent with M1 above) E1: Calculation of radius of circle E1: Algebraic manipulation to find v
Note: If angular speed used can achieve 3/4.				

| Question | | Expected Answer(s)
 (cont)
 Method 2:
 p_{s} must be in the direction $P S$ for interception
 Mark | Additional Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |

Qu	est	Expected Answer(s)	Max Mark	Additional Guidance
A	7	$\begin{aligned} & a_{L}=\frac{1}{9} g \quad a_{B}=g \\ & \downarrow \\ & { }_{B} a_{L}=g-\frac{1}{9} g=\frac{8 g}{9} \\ & { }_{B} v_{L}=\int_{B} a_{L} d t=\frac{8 g}{9} t+c \\ & t=0, v=-3 \cdot 5 \quad \Rightarrow v=\frac{8 g}{9} t-3 \cdot 5 \\ & { }_{B} r_{L}=\int_{B} v_{L} d t=\frac{4 g}{9} t^{2}-3 \cdot 5 t+k \\ & t=0, r=-1 \quad \Rightarrow{ }_{B} r_{L}=\frac{4 g}{9} t^{2}-3 \cdot 5 t-1 \end{aligned}$ ${ }_{B} r_{L}(t)=0$ when ball hits floor $\begin{aligned} & \frac{4 g}{9} t^{2}-3 \cdot 5 t-1=0 \\ & 4 g t^{2}-31 \cdot 5 t-9=0 \end{aligned}$ $39 \cdot 2 t^{2}-31 \cdot 5 t-9=0$ $t=\frac{31 \cdot 5 \pm \sqrt{(-31 \cdot 5)^{2}-4 \times 39 \cdot 2 \times-9}}{78 \cdot 4}$ $t=1.03$ or $t=-0.22$ $t=1.03$ seconds (reject negative answer)	7	M1: Find relative acceleration M1: Use of calculus to find relative velocity E1: Correct expression for relative velocity E1: Correct expression for relative displacement M1: Statement for conditions when ball hits floor of lift E1: Process of calculating time E1: Correct answer for time

	sti		Expected Answer(s)	$\begin{aligned} & \text { Max } \\ & \text { Mark } \\ & \hline \end{aligned}$	Additional Guidance
A	8	$\begin{aligned} & (\mathbf{a}) \\ & \mathbf{(b)} \end{aligned}$	$\text { At } Q: \text { total energy }=\frac{1}{2} m v^{2}=1 \cdot 5 u^{2}$ At top of circle total energy: $\begin{aligned} & m g h+\frac{1}{2} m v^{2} \\ & =3 g \times 1 \cdot 8+\frac{3}{2} v^{2}=5 \cdot 4 g+\frac{3}{2} v^{2} \end{aligned}$ $1 \cdot 5 u^{2}>5 \cdot 4 g$ For complete circles $v>0$: $u>\sqrt{\frac{18 g}{5}} \mathrm{~ms}^{-1}$ Height at any time: $0 \cdot 9(1-\cos \theta)$ At rest (maximum height): $\text { Energy }=m g h=3 g \times 0 \cdot 9(1-\cos \theta)$ $\begin{aligned} & \text { If } u=4: \text { Energy at } Q= \\ & 24=3 g \times 0 \cdot 9(1-\cos \theta) \\ & \cos \theta=0 \cdot 093 \\ & \theta=84 \cdot 7^{\circ} \end{aligned}$ $\text { Angle of oscillation }=169 \cdot 4^{\circ}$ Maximum tension when $\theta=0$ $\begin{aligned} & T-3 g=\frac{m \nu^{2}}{r} \\ & \uparrow \\ & T=3 g+\frac{3 \times 4^{2}}{0 \cdot 9}=82 \cdot 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 3 \\ & 7 \end{aligned}$	M1: Consideration of conservation of energy. E1: Correct statements of energy at bottom and top of circle M1: For complete circles $v>0$ and find u M1: General expression for height at any time M1: Energy when rod is at rest E1: Equate this with energy vertically below P E1: Solve trig equation to find angle of oscillation M1: Understanding of maximum tension (stated or implied) M1: Use of $F=\frac{m v^{2}}{r}$ E1: Calculation of Tension

Question			Expected Answer(s)		Additional Guidance
A	9	(a)	(i) (ii) $\begin{aligned} & v=\int a d t=\int 13\left(\frac{3}{8}-\frac{t}{16}\right) d t=13\left(\frac{3}{8} t-\frac{t^{2}}{32}\right)+c \\ & t=0,0=0 \Rightarrow c=0 \\ & v=13\left(\frac{3}{8} t-\frac{t^{2}}{32}\right) \\ & t=\frac{5}{2}: v=13\left(\frac{3}{8} \times \frac{5}{2}--\frac{\left(\frac{5}{2}\right)^{2}}{32}\right)=9 \cdot 65 \mathrm{~ms}^{-1} \\ & \rightarrow: R=9 \cdot 65 \cos 25^{\circ} \times t \\ & \uparrow: s=u t+\frac{1}{2} a t^{2} \\ & 0=9 \cdot 65 \sin 25^{\circ} \times t-\frac{1}{2} g t^{2} \\ & t(4 \cdot 08-4 \cdot 9 t)=0 \\ & t=0 \text { or } t=0 \cdot 83 \\ & \rightarrow: R=9 \cdot 65 \cos 25^{\circ} \times 0 \cdot 83=7 \cdot 26 \mathrm{metres} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	M1: Integration to find expression for velocity E1: Substitution and correct expression E1: Substitute for t and correct answer for speed M1:Consider motion horizontally and vertically with substitution E1: Value of t E1: Value of R
A	9	(b)	(i) (ii) $\begin{aligned} & \rightarrow 7 \cdot 51=10 \cdot 2 \cos \theta \times t \quad t=\frac{7 \cdot 51}{10 \cdot 2 \cos \theta} \\ & \uparrow: s=u t+\frac{1}{2} t^{2} \\ & 0=\frac{10 \cdot 2 \sin \theta \times 7 \cdot 51}{10 \cdot 2 \cos \theta}-\frac{g}{2}\left(\frac{7 \cdot 51}{10 \cdot 2 \cos \theta}\right)^{2} \\ & 7 \cdot 51 \tan \theta-2 \cdot 656 \ldots . . \sec ^{2} \theta=0 \\ & 7 \cdot 51 \tan \theta-2 \cdot 656 \ldots . \tan ^{2} \theta-2 \cdot 656 \ldots=0 \\ & \tan \theta=2 \cdot 41 \text { or } \tan \theta=0 \cdot 41 \\ & \theta=67 \cdot 2^{\circ} \\ & \uparrow: v^{2}=u^{2}+2 a s \\ & s=4 \cdot 51 \text { or } s=0 \cdot 76 m \end{aligned}$ Athlete cannot jump 4.51 m vertically \Rightarrow Take-off angle $\approx 22 \cdot 3^{\circ}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	M1:Consider motion \rightarrow and expression for t M1: Consider motion vertically with this value of t and substitution E1: Solution of trig equation to give 2 angles of projection E1: Find two possible heights E1: Explanation of answer

Question		Expected Answer(s) $\mathbf{A 0}$		Max (cont) Alternative for last 2 marks: Work done
Additional Guidance $\int_{0}^{T} F v d t=\int_{0}^{T} \frac{k m g}{v} \times v d t=\int_{0}^{T} k m g d t=k m g T$ $k m g T=\frac{1}{2} m u^{2}+m g h$ $=\frac{1}{2} m u^{2}+m\left(k^{2} \ln \left\|\frac{k}{k-u}\right\|-k u-\frac{1}{2} u^{2}\right)$ $T=\frac{k}{g} \ln \left\|\frac{k}{k-u}\right\|-\frac{u}{g}$				

[END OF SECTION A]

Section B (Mathematics for Applied Mathematics)

Question			Expected Answer(s)	$\begin{array}{\|l} \text { Max } \\ \text { Mark } \\ \hline \end{array}$	Additional Guidance
B	1		$\begin{aligned} y & =2 x \sqrt{x-1} \\ \frac{d y}{d x} & =2 x \cdot \frac{d}{d x}(\sqrt{x-1})+\sqrt{x-1} \times \frac{d}{d x}(2 x) \\ & =2 x \cdot \frac{1}{2}(x-1)^{-\frac{1}{2}}+\sqrt{x-1} \times 2 \end{aligned}$ Gradient given by $\frac{d y}{d x}$ when $x=10$, $\begin{aligned} \text { Gradient } & =10 \cdot(9)^{-\frac{1}{2}}+\sqrt{9} \times 2 \\ & =\frac{28}{3} \end{aligned}$	4	1 product rule 1 first correct term 1 second correct term 1 evaluation (accept decimal equivalent to minimum of 3 sf)
B	2	(a)	$A+B=\left(\begin{array}{ccc}4 & -7 & 6 \\ k-3 & 9 & -1 \\ 5 & 1 & 1\end{array}\right)$	1	1 evaluation
B	2	(b)	$\begin{aligned} \operatorname{det} A & =1\left\|\begin{array}{cc} 0 & -1 \\ 3 & 0 \end{array}\right\|-3\left\|\begin{array}{cc} k & -1 \\ 5 & 0 \end{array}\right\|+4\left\|\begin{array}{ll} k & 0 \\ 5 & 3 \end{array}\right\| \\ & =1(0+3)-3(0+5)+4(3 k-0) \\ & =12 k-12 \end{aligned}$	2	1 form of determinant 1 evaluation
B	2	(c)	$\begin{aligned} B C & =\left(\begin{array}{ccc} 3 & -10 & 2 \\ -3 & 9 & 0 \\ 0 & -2 & 1 \end{array}\right)\left(\begin{array}{lll} 3 & 2 & -6 \\ 1 & 1 & -2 \\ 2 & 2 & -1 \end{array}\right) \\ & =\left(\begin{array}{lll} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{array}\right) \end{aligned}$	1	1 evaluation
B	2	(d)	$\begin{aligned} & B C=3 I . \\ & B=3 C^{-1} \text { or } C=3 B^{-1} \end{aligned}$	2	1 identity matrix connection or mention of inverse 1 relationship correct

Question		Expected Answer(s)	$\begin{aligned} & \text { Max } \\ & \text { Mark } \end{aligned}$	Additional Guidance
B	3	$\begin{aligned} & I=\int x \sin 3 x d x \\ & \begin{aligned} u & =x \quad d v \\ d u & =1 \quad v \\ & =\int \sin 3 x \\ & =\frac{-1}{3} \cos 3 x \end{aligned} \\ & I=x \cdot \frac{-1}{3} \cos 3 x-\int 1 \cdot \frac{-1}{3} \cos 3 x d x \\ &=\frac{-x}{3} \cos 3 x+\frac{1}{3} \int \cos 3 x d x \\ &=\frac{-x}{3} \cos 3 x+\frac{1}{9} \sin 3 x \\ & I_{0}^{2 \pi}=\left[\frac{-x}{3} \cos 3 x+\frac{1}{9} \sin 3 x\right]_{0}^{2 \pi} \\ &=\left[\frac{-2 \pi}{3} \cos 6 \pi+\frac{1}{9} \sin 6 \pi\right]-\left[0+\frac{1}{9} \sin 0\right] \\ &=\frac{-2 \pi}{3} \end{aligned}$	5	1 evidence of integration by parts 1 correct choice of $u, d v$ 1 correct substitution 1 final integration correct

Question			Expected Answer(s)	Max Mark	Additional Guidance
B	4		$\begin{aligned} & \sum_{r=1}^{80} 3 r^{2}=3 \sum_{r=1}^{80} r^{2} \\ & \text { using } \sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6} * \\ & 3 \sum_{r=1}^{80} r^{2}=3\left(\frac{80(81)(2 \cdot 80+1)}{6}\right) \\ & \quad=521,640 \end{aligned}$	2	$\mathbf{1}$ correct substitution into * 1 evaluation (using incorrect formula - this mark available if of equivalent difficulty eg $\sum_{r=1}^{n} r^{2}=\left(\frac{n(n+1)}{2}\right)^{2}$
B	5	(a)	$\begin{aligned} & \left(e^{x}+2\right)^{4} \\ = & 1 \cdot\left(e^{x}\right)^{4}(2)^{0}+4\left(e^{x}\right)^{3}(2)^{1}+6\left(e^{x}\right)^{2}(2)^{2} \\ + & 4 \cdot\left(e^{x}\right)^{1}(2)^{3}+1 \cdot\left(e^{x}\right)^{0}(2)^{4} \\ = & e^{4 x}+8 e^{3 x}+24 e^{2 x}+32 e^{x}+16 \end{aligned}$	3	Accept Binomial expansion or Pascal's Triangle 1 correct coefficients 1 correct powers of e^{x} and 2 1 simplification
B	5	(b)	$\begin{aligned} & \int\left(e^{x}+2\right)^{4} d x \\ & =\int\left(e^{4 x}+8 e^{3 x}+24 e^{2 x}+32 e^{x}+16\right) d x \\ & =\frac{e^{4 x}}{4}=\frac{8 e^{3 x}}{3}+\frac{24 e^{2 x}}{2}+32 e^{x}+16 x+c \end{aligned}$	2	$\mathbf{1}$ correct integration of composite function (at least one correct term involving composite exponential) 1 completion of integral ($+c$ not essential)

Question			Expected Answer(s)	Max Mark	Additional Guidance
B	6	(a)	10000 people.	1	
B	6	(b)	$\begin{aligned} & \frac{10000}{N(20000-N)}=\frac{A}{N}+\frac{B}{20000-N} \\ & 10000=A(20000-N)+B N \\ & A=\frac{1}{2}, \quad B=\frac{1}{2} \end{aligned}$ Using $\frac{10000}{N(20000-N)} d N=d t$ gives $\frac{1}{2}\left(\frac{1}{N}+\frac{1}{20000-N}\right) d N=d t$ Integrating, $\begin{aligned} & \int\left(\frac{1}{N}+\frac{1}{20000-N}\right) d N=\int 2 d t \\ & \ln N-\ell n(20000-N)=2 t+c \\ & \ln \frac{N}{20000-N}=2 t+c \end{aligned}$	5	1 appropriate form of partial fractions 1 correct values of A and B 1 separate variables 1 starts integration eg $\int \frac{1}{N} d N$ correct 1 completes integration (moduli signs not required)

Question			Expected Answer(s)	Max Mark	Additional Guidance
B	6	(c)	$\begin{aligned} & \text { Using } \ell n \frac{N}{20000-N}=2 t+c \\ & \text { gives } \frac{N}{20000-N}=e^{2 t+c} \\ & \quad \frac{N}{20000-N}=K e^{2 t}\left(\text { where } K=e^{c}\right) \\ & \text { When } t=0, N=100 \\ & \frac{100}{19900}=K \\ & K=\frac{1}{199} \\ & \text { Hence } N=(20000-N) \frac{e^{2 t}}{199} \\ & 199 N=(20000-N) e^{2 t} \\ & N\left(199+e^{2 t}\right)=20000 e^{2 t} \\ & N=\frac{20000 e^{2 t}}{199+e^{2 t}} \end{aligned}$	4	$\mathbf{1}$ accurately converts to exponential form (stating explicitly $K=e^{c}$ not required) 1 interprets initial condition $1 K$ valve 1 correctly gathers N terms

[END OF SECTION B]
[END OF QUESTION PAPER]

