2013 Applied Mathematics - Mechanics

Advanced Higher

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Applied Mathematics - Statistics - Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Applied Mathematics - Statistics - Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

These principles describe the approach taken when marking Advanced Higher Applied Mathematics papers. For more detailed guidance please refer to the detailed Marking Instructions.

1 The main principle is to give credit for the skills demonstrated and the criteria met. Failure to have a correct method may not preclude a candidate gaining credit for their solution.

2 The answer to one part of a question, even if incorrect, can be accepted as a basis for subsequent dependent parts of the question.

3 The following are not penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- legitimate variation in numerical values / algebraic expressions.

4 Full credit will only be given where the solution contains appropriate working. Where the correct answer might be obtained by inspection or mentally, credit may be given.

5 Sometimes the method to be used in a particular question is explicitly stated; no credit will be given where a candidate obtains the correct answer by an alternative method.

6 Where the method to be used in a particular question is not explicitly stated in the question paper, full credit is available for an alternative valid method. (Some likely alternatives are included but these should not be assumed to be the only acceptable ones.)

In the detailed Marking Instructions which follow, marks are shown alongside the line for which they are awarded. There are two codes used M and E . The code M indicates a method mark, so in question B3, M1 means a method mark for understanding integration by parts. The code E refers to 'error', so in question B6(b), up to 2 marks can be awarded but 1 mark is lost for each error.

Section A

Question		Solution		Additional Guidance
A	1	A particle is moving in a plane such that t seconds after the start of its motion, the velocity is given by $\left(3 t i+5 t^{2} j\right) \mathrm{ms}^{-1}$. The particle is initially at the point $\left(\frac{1}{2} i-7 j\right)$ metres relative to a fixed origin. Find the distance of the particle from O when $t=3$ $\begin{aligned} & s=\int \underline{v} d t=\frac{3}{2} t^{2} i+\frac{5}{3} t^{3} j+\underline{c} \\ & t=0 \quad \underline{s}=\left(\frac{1}{2} i-7 j\right) \Rightarrow \underline{c}=\left(\frac{1}{2} i-7 j\right) \\ & \underline{s}=\left(\frac{3}{2} t^{2}+\frac{1}{2}\right) i+\left(\frac{5}{3} t^{3}-7\right) j \\ & \mathrm{t}=3 \quad \underline{s}=(14 i+38 j) \\ & \|s\|=\sqrt{14^{2}+38^{2}}=40.5 \text { metres } \end{aligned}$	3	M1 Integration of velocity for displacement with correct integration 1 Evaluate c and give vector for displacement 1 Find vector when $t=3$ and its magnitude
A	2	A ball of mass 0.5 kg is released from rest at a height of 10 metres above the ground. If the ball reaches 2.5 metres after its first bounce, calculate the size of the impulse exerted by the ground on the ball. Method 1: $\begin{aligned} & s=10 \quad t=\quad u=0 \quad v=? \quad a=g \\ & \downarrow v^{2}=u^{2}+2 a s \\ & \mathrm{u}^{2}=20 g \\ & \mathrm{u}=14 \mathrm{~ms}^{-1} \end{aligned}$ $\begin{aligned} & s=2.5 \quad t=\quad u=\quad v=0 \quad a=-g \\ & \uparrow v^{2}=u^{2}+2 a s \\ & 0=v^{2}-5 g \\ & \mathrm{v}=7 \end{aligned}$ $\begin{aligned} & \uparrow \quad I=m v-m u \\ & I=0 \cdot 5(7-(-14) \\ & I=10 \cdot 5 \mathrm{Ns} \end{aligned}$ Method 2: $\text { Initial } E_{P}=5 g$ On impact: $\frac{1}{2} m u^{2}=5 g \Rightarrow u^{2}=20 g \Rightarrow u=14 \mathrm{~ms}^{-1}$ Final $E_{P}=\frac{5 g}{4} \Rightarrow \frac{1}{2} m v^{2}=\frac{5 g}{4} \Rightarrow v=\sqrt{5 g}=7 \mathrm{~ms}^{-1}$ $\begin{aligned} & \uparrow I=m v-m u \\ & I=0 \cdot 5(7-(-14) \\ & I=10 \cdot 5 \mathrm{Ns} \end{aligned}$	4	M1 Motion under gravity to find velocity on impact 1 Value of u M1 Motion under gravity to find velocity of rebound M1 Impulse momentum equation M1 Energy equation for initial PE and impact KE 1 Value of u M1 Energy equation for final PE and rebound KE M1 Impulse momentum equation

	estion	Solution	Max Mark	Additional Guidance
A	3	A particle of mass 3 kilograms moves under the action of its own weight and a constant force $F=(3 \boldsymbol{i}-5.4 \boldsymbol{j})$ where i and j are unit vectors in the horizontal and vertical directions respectively. Initially the particle has velocity $(2 i-j) \mathrm{ms}^{-1}$ as it passes through a point A. The particle passes through B after 4 seconds. Find the work done to move the particle from A to B. Method 1: $\begin{aligned} & F=m a \\ & \binom{3}{5 \cdot 4}+\binom{0}{-3 g}=3 a \Rightarrow a=\binom{1}{-8} \\ & s=u t+1 / 2 a t^{2} \end{aligned}$ $\mathrm{s}=\binom{2}{-1} \times 4+\frac{1}{2}\binom{1}{-8} \times 4^{2}=\binom{16}{-68}$ Work done $=F \bullet s=\binom{3}{-24} \bullet\binom{16}{-68}=48+1632=1680 J$ Method 2 $\begin{aligned} & F=m a \\ & \binom{3}{-5.4}+\binom{0}{-3 g}=3 a \Rightarrow a=\binom{1}{-8} \\ & \underline{a}=i-8 j \\ & \underline{v}=t i-8 t j+c \\ & t=0 \quad \underline{v}=2 i-j \Rightarrow \underline{v}=(2+t) i-(8 t+1) j \end{aligned}$ Work done $=\int_{0}^{4} \boldsymbol{F} \cdot \boldsymbol{v} \boldsymbol{d} \boldsymbol{t}=\int_{0}^{4}\binom{3}{-24} \cdot\binom{2+\boldsymbol{t}}{-8 \boldsymbol{t}-1} \boldsymbol{d t}$ $\begin{aligned} & =\int_{0}^{4}(6+3 \boldsymbol{t}+192 \boldsymbol{t}+24) \boldsymbol{d} \boldsymbol{t}=\int_{0}^{4}(195 \boldsymbol{t}+30) d \boldsymbol{t} \\ & =\left[\frac{195}{2} \boldsymbol{t}^{2}+30 t\right]_{0}^{4}=1680 \end{aligned}$	5	M1 Collective force correct M1 Method and calculation of acceleration 1 Use of stuva and correct substitution to find displacement M1 Method and calculation of work done 1 Correct answer M1 Collective force correct M1 Method and calculation of acceleration 1 Integration to find expression for \underline{v} M1 Method and calculation of work done 1 Correct answer

Que	estion	Solution	Max Mark	Additional Guidance
A	4	A go-kart of mass 100 kilograms accelerates at $3 \mathrm{~ms}^{-2}$ at the instant when its speed is $5 \mathrm{~ms}^{-1}$ and the engine's power is at a maximum. Given that there is a total resistance to motion of 60 N throughout the go-kart's motion, find the maximum speed which the go-kart can achieve. $F=\frac{P}{v}=\frac{P}{5}$ Accelerating force $=\frac{P}{5}-60$ $\begin{aligned} & F=m a \Rightarrow \frac{P}{5}-60=100 \times 3 \\ & P=1800 W \end{aligned}$ Maximum speed: $\begin{aligned} & a=0 \Rightarrow \frac{P}{V_{\max }}-60=0 \\ & \mathrm{~V}_{\max }=\frac{\mathrm{P}}{60}=\frac{1800}{60}=30 \mathrm{~ms}^{-1} \end{aligned}$	4	M1 Correct formula and substitute to find accelerating force 1 Calculation of Power M1 Understanding of maximum speed 1 Calculation of speed.

Qu	estion	Solution	Max Mark	Additional Guidance
A	5	A piano of mass 160 kilograms is resting on a rough plane inclined at an angle $\boldsymbol{\theta}^{\circ}$ to the horizontal, where $\tan \boldsymbol{\theta}=\frac{7}{24}$. When a removal man applies a horizontal force of $\mathbf{8 5 0}$ newtons, the piano is just on the point of moving up the plane. Find the value of the coefficient of friction between the piano and the surface of the plane When the removal man increases the horizontal force to 1000 newtons, the piano begins to accelerate up the plane, along the line of greatest slope. How far does the piano travel in 3 seconds? $\begin{aligned} R & =850 \sin \theta+160 g \cos \theta \\ & =850\left(\frac{7}{25}\right)+160(9 \cdot 8)\left(\frac{24}{25}\right)=1743 \cdot 28 \mathrm{~N} \end{aligned}$ $850 \cos \theta=\mu R+160 g \sin \theta$ $\mu R=850\left(\frac{24}{25}\right)-160(9 \cdot 8)\left(\frac{7}{25}\right)=376 \cdot 96 \mathrm{~N}$ $\mu=\frac{\mu R}{R}=\frac{376 \cdot 96}{1743 \cdot 28}=0 \cdot 216$ $\begin{aligned} & \text { Y } \quad R=1000\left(\frac{7}{25}\right)+160(9 \cdot 8)\left(\frac{24}{25}\right)=1785 \cdot 28 \mathrm{~N} \\ & F=m a: \quad 1000\left(\frac{24}{25}\right)-160(9 \cdot 8)\left(\frac{7}{25}\right)-\mu(1785 \cdot 28)=160 a \\ & a=0 \cdot 846 \mathrm{~ms}^{-2} \\ & s=? \quad t=3 \quad u=0 \quad a=0 \cdot 846 \\ & s=u t+\frac{1}{2} a t^{2}: \quad s=\frac{1}{2}(0 \cdot 846)\left(3^{2}\right)=3 \cdot 81 \text { metres } \end{aligned}$	6	M1 Correct diagram including friction, horizontal force, normal reaction and weight and method of resolving in 2 perpendicular directions 1 Correct resolution perpendicular to the slope 1 Correct resolution parallel to slope 1 Correct value of μ 1 Equilibrium perpendicular to slope and $F=m a$ along the slope to find acceleration 1 stuva substitution to find displacement

Que	estion	Solution	$\begin{aligned} & \hline \text { Max } \\ & \text { Mark } \\ & \hline \end{aligned}$	Additional Guidance
A	7	A light elastic string of natural length l metres hangs from a fixed point O with a particle of mass m kilograms attached at its lower end. In equilibrium the string is extended by e metres. The particle is then pulled down a further distance a metres where $a<e$ and released. Show that the ensuing motion is simple harmonic and state the period of the motion. The maximum velocity of the particle during motion is $\frac{1}{2} \sqrt{g e}$. Find an expression for the amplitude of the motion in terms of e. In equilibrium: Tension $=\frac{\lambda e}{l}=m g \quad \lambda=\frac{m g l}{e}$ $\begin{gathered} m g-T=m \ddot{x} \\ m g-\frac{\lambda(e+x)}{l}=m \ddot{x} \\ \omega=-\sqrt{\frac{\lambda}{m l}} m g-\frac{m g l}{e}\left(\frac{e+x}{l}\right)=m \ddot{x} \\ \ddot{x}=\frac{-g}{e}(e+x-e) \\ \ddot{x}=-\frac{g}{e} x \quad\left[\ddot{x}=-\frac{\lambda}{m l} x\right] \end{gathered}$ i.e SHM where $\omega=\sqrt{\frac{g}{e}}$ $\begin{aligned} & \text { Period }=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{e}{g}} \quad\left[2 \pi \sqrt{\frac{m l}{\lambda}}\right] \\ & v_{\max }=a w \\ & \frac{1}{2} \sqrt{g e}=a \sqrt{\frac{g}{e}} \\ & \frac{1}{4} g e=a^{2}\left(\frac{g}{e}\right) \\ & a=\frac{1}{2} e \end{aligned}$	6	M1 Use of Hooke's Law in equilibrium position M1 In extension $\downarrow F=m a$ and substitution 1 Proof of SHM M1 Statement of Period M1 Statement for $\mathrm{v}_{\text {max }}$ and substitution 1 Calculation of final answer

Question		Solution
A		A smooth solid hemisphere of radius a metres is fixed its plane face on a horizontal table and its curved surf uppermost. A particle P of mass m kilograms is placed highest point on the hemisphere and given an initial horizontal speed $\sqrt{\frac{a g}{2}} \mathrm{~ms}^{-1}$. The particle moves along curved surface of the hemisphere until it leaves the s at Q Calculate the angle between the tangent at Q and the horizontal, and find an expression for the speed of th at Q.
P		

Energy at Initial position: $E_{P}+E_{K}=m g a+\frac{1}{2} m \frac{g a}{2}=\frac{5 g a}{4}$
At Q : Total energy: $E_{P}+E_{K}=m g a \cos \theta+\frac{1}{2} m v^{2}$
Conservation of energy:
$m g a \cos \theta+\frac{1}{2} m v^{2}=\frac{5 m g a}{4}$
$v^{2}=\frac{5 g a}{2}-2 g a \cos \theta$

At Q consider forces acting towards O
$m g \cos \theta-R=\frac{m v^{2}}{a}$

When body leaves surface $R=0$
$m g \cos \theta=\frac{m v^{2}}{a}$
$v^{2}=g a \cos \theta$
In (i) $\frac{5 g a}{2}-2 g a \cos \theta=g a \cos \theta$

$$
\Rightarrow \cos \theta=\frac{5}{6} \Rightarrow \theta=33 \cdot 6^{\circ}
$$

$$
v=\sqrt{\frac{5 g a}{6}}
$$

M1 initial total energy stated

M1 Energy at \boldsymbol{Q} and
conservation of energy

M1 Apply $F=m a$ towards O

M1 Interpretation of body leaving surface as $R=0$ (stated)

1 Algebraic manipulation to find θ

1 Substitution in (ii) to find v

Question		Solution	Max Mark
	Addition Guidance		

A 10
Two projectiles are launched simultaneously from points A and
B, where B is due East of A and situated on the same horizontal plane through A. The projectile launched from point A is projected towards B with speed $90 \mathrm{~ms}^{-1}$ at an angle of 30° to the horizontal. The projectile from point B is projected towards A with speed $50 \mathrm{~ms}^{-1}$ at an angle θ° to the horizontal.
The two missiles collide in mid-air at a distance d metres horizontally from point A.
Show that the height \boldsymbol{h} at this point of collision is

$$
h=\frac{d(4050 \sqrt{3}-g d)}{12150}
$$

Find the angle of projection θ° at which the projectile at B is launched.

The projectiles collide 5 seconds after launch. Calculate the distance between A and B.

Projectile A: \rightarrow
$d=90 \cos 30^{\circ}=45 \sqrt{3} \times t$
$t=\frac{d}{45 \sqrt{3}}=\frac{\sqrt{3} d}{45}$
$\uparrow s=h \quad t=t \quad u=90 \sin 30^{\circ}=45 \quad a=-g$
$s=u t+\frac{1}{2} a t^{2}: \quad h=45\left(\frac{\sqrt{3} d}{135}\right)-\frac{g}{2}\left(\frac{\sqrt{3} d}{135}\right)^{2}$
$h=\frac{\sqrt{3} d}{3}-\frac{g d^{2}}{12150}$
$h=\frac{d(4050 \sqrt{3}-g d)}{12150}$

Projectile B \uparrow :
$s=\frac{d(4050 \sqrt{3}-g d)}{12150} \quad t=\frac{\sqrt{3} d}{145} \quad u=50 \sin \theta \quad a=-g$
$s=u t+\frac{1}{2} a t^{2}$
$\frac{d(4050 \sqrt{3}-g d)}{12150}=50 \sin \theta\left(\frac{\sqrt{3} d}{145}\right)-\frac{g}{2}\left(\frac{\sqrt{3} d}{145}\right)^{2}$
$\frac{(4050 \sqrt{3}-g d)}{12150}=\frac{10 \sqrt{3} d}{27} \sin \theta-\frac{g d}{12150}$
$\sin \theta=\frac{9}{10}=0.9 \Rightarrow \theta=64 \cdot 2^{\circ}$
Horizontal displacements:
$x_{A}=d=45 \sqrt{3} t=225 \sqrt{3} \quad[\approx 389 \cdot 7]$
$x_{B}=50 \cos \theta \times t=50 \times \frac{\sqrt{19}}{10} \times 5=25 \sqrt{19} \quad[\approx 109 \cdot 0]$
Distance between A and $B=225 \sqrt{3}+25 \sqrt{19} \approx 500 \mathrm{~m}$

M1 Horizontal motion with constant speed to give expression for t

M1 Vertical motion under gravity with values for stuva stated

1 Expression for h

1 Manipulation to give answer

M1 Vertical motion under gravity with values for stuva stated

2 Algebraic
substitution and manipulation

1 Expression for $\sin \theta$ and value of θ

M1 Expressions for horizontal distances

1 Final answer

Question		Solution
A		A body of fixed mass m kilograms is projected vertically upwards from a point on the surface of a planet with an initial speed of $u \mathrm{~ms}^{-1}$.
on the body is $\frac{G M m}{d^{2}}$ where d metres is the distance from the		
centre of the planet, show that the speed of the body when it		
has reached a height \boldsymbol{h} metres above the surface is given by		
$v=\sqrt{u^{2}-\frac{2 G M h}{R(R+h)}}$,		

Show that the escape speed necessary for the body to continue into space can be written in the form $u=k \sqrt{\frac{G M}{R}}$ and state the value of k.

$$
\begin{gathered}
F=m a: \\
\frac{-G M m}{(R+h)^{2}}=m \times a c c \rightarrow \frac{-G M}{(R+h)^{2}}=v \frac{d v}{d h} \\
\int \frac{-G M}{(R+h)^{2}} d h=\int v d v \\
\frac{G M}{R+h}=\frac{v^{2}}{2}+c
\end{gathered}
$$

Max height: $v=0 ; h=H$
$u^{2}-\frac{2 G M H}{R(R+H)}=0 \rightarrow u^{2}=\frac{2 G M H}{R(R+H)}$
$u^{2} R(R+H)=2 G M H$
$u^{2} R^{2}+u^{2} R H=2 G M H \rightarrow u^{2} R^{2}=H\left(2 G M-u^{2} R\right)$
$H=\frac{R^{2} u^{2}}{2 G M-R u^{2}}$
Escape speed: $H \rightarrow \infty \Rightarrow 2 G M-R u^{2}=0$
$u=\sqrt{\frac{2 G M}{R}} \Rightarrow k=\sqrt{2}$

Addition Guidance Mark

M1 Use of $F=m a$ and appropriate substitution

M1 Method of separate variables

1 Integration and substitution

$$
h=0, v=u: \frac{G M}{R}=\frac{u^{2}}{2}+c \rightarrow c=\frac{G M}{R}-\frac{u^{2}}{2}
$$

1 Expression for c using initial conditions

$$
\frac{G M}{R+h}=\frac{v^{2}}{2}+\frac{G M}{R}-\frac{u^{2}}{2}
$$

$$
v^{2}=u^{2}+\frac{2 G M}{(R+h)}-\frac{2 G M}{R}=u^{2}+\frac{2 G M(R-(R+h))}{R(R+h)}
$$

$$
v^{2}=u^{2}-\frac{2 G M h}{R(R+h)}
$$

1 Rearrangement of formula

M1 Interpretation of max ht by substituting $v=0$

1 Algebraic manipulation
1 Correct answer
M1 Understanding of escape speed with substitution

1 Manipulation and value of k

Section B

Question			Sample Answer/Work	Max Mark	Criteria for Mark
B	2		Matrices are given as		
			$\mathbf{A}=\left(\begin{array}{ll} 4 & \mathrm{x} \\ 0 & 2 \end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ll} 5 & 1 \\ 0 & 1 \end{array}\right) \quad \mathbf{C}=\left(\begin{array}{cc} y & 3 \\ -1 & 2 \end{array}\right)$		
	2	a	Write $\mathrm{A}^{2}-3 \mathrm{~B}$ as a single matrix	2	
B			$A^{2}-3 B=\left(\begin{array}{ll} 4 & x \\ 0 & 2 \end{array}\right)\left(\begin{array}{ll} 4 & x \\ 0 & 2 \end{array}\right)-3\left(\begin{array}{ll} 5 & 1 \\ 0 & 1 \end{array}\right)$		
			$=\left(\begin{array}{cc} 16 & 6 x \\ 0 & 4 \end{array}\right)-3\left(\begin{array}{ll} 5 & 1 \\ 0 & 1 \end{array}\right)$		$1 \mathrm{~A}^{2}$ correct.
			$=\left(\begin{array}{cc} 16 & 6 \times \\ 0 & 4 \end{array}\right)-\left(\begin{array}{cc} 15 & 3 \\ 0 & 3 \end{array}\right)$		
			$=\left(\begin{array}{cc} 1 & 6 x-3 \\ 0 & 1 \end{array}\right)$		1 For correct evaluation of 3B and simplify.
B	2	b	(i) Given that \mathbf{C} is non-singular, find \mathbf{C}^{-1}, the inverse of \mathbf{C}.	2	
			$\operatorname{det} \mathrm{C}=2 y+3$		1 Determinant correct.
			$C^{-1}=\frac{1}{2 y+3}\left(\begin{array}{ll} 2 & -3 \\ 1 & y \end{array}\right)$		1 Inverse correct.
B	2	b	(ii) For what value of \boldsymbol{y} would matrix C be singular?	1	
			$2 y+3=0$ for C singular		
			$y=-\frac{3}{2}$		1 y value correct.

Notes:

Question		Sample Answer/Work	Max Mark	Criteria for Mark
B	3	Use integration by parts to obtain $\int \frac{\ln x}{x^{3}} d x$ where $x>0$ $u=\ln x, d v=\frac{1}{x^{3}} d x$ $d u=\frac{1}{x} d x, v=\int \frac{1}{x^{3}} d x$ $v=-\frac{1}{2 x^{2}}$	4	M1 Understand integration by parts.
		$\begin{aligned} & I=\ln x \cdot-\frac{1}{2 x^{2}}-\int-\frac{1}{2 x^{2}} \cdot \frac{1}{x} d x \\ & =-\frac{\ln x}{2 x^{2}}+\frac{1}{2} \int \frac{d x}{x^{3}} \\ & =-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}+c \end{aligned}$		1 Integrates $d v$ and substitutes correctly. 1 Correctly combines v and $d u$. 1 Correctly integrates second term.

Notes:

3.1 Treat omission of " $+c$ " as bad form: do not penalise.
3.2 Negative indices for x equally acceptable.

Question			Sample Answer/Work	Max Mark	Criteria for Mark
B	4	a	State the results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{3}$ in terms of n. Hence show that $\begin{aligned} & \sum_{\mathbf{r}=\mathbf{1}}^{\mathbf{n}}\left(\mathbf{r}^{\mathbf{3}}-\mathbf{3 r}\right)=\frac{\mathbf{n}(\mathbf{n}+\mathbf{1})(\mathbf{n}-\mathbf{2})(\mathbf{n}+\mathbf{3})}{\mathbf{4}} \\ & \begin{aligned} & \sum_{r=1}^{n} r=\frac{n(n+1)}{2} \\ & \sum_{r=1}^{n}\left(r^{3}-3 r\right)=\sum_{r=1}^{n} r^{3} r^{3}-3 \sum_{r=1}^{n} r \\ & 4 \end{aligned} \\ &=\frac{n^{2}(n+1)^{2}}{4} \\ &=\frac{n(n+1)}{4}[n(n+1)-6] \\ &=\frac{n}{4}(n+1)\left(n^{2}+n-6\right) \end{aligned}$ Note: This or equivalent intermediate algebra required for this mark.	4	1 Both formulae correct. 1 Correct separation. 1 Substitution . 1 Algebra correct.

Notes:

Notes:

5.1 Final answer of $y=3+c e^{-x^{2}}$ also correct.
5.2 " $+c$ " required for mark here.

Notes:

5.3 Any constant acceptable. Therefore, term containing constant can be positive or negative.
$5.4 \quad 6-2 y=e^{-x^{2}-c}$ a valid alternative for this mark.
5.5 Either of last two lines valid for award of final mark.

Notes:

Notes:

Question			Sample Answer/Work		Criteria for Mark
B	6	c	A particle follows the path of the cycloid where t is the time elapsed since the particle's motion commenced. Calculate the speed of the particle when $t=\frac{\pi}{3}$. $\text { Speed }=\sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}}=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=1$	2	1 Correct formula. 1 Applies correct values to obtain a speed of 1 .
Notes:					

[END OF MARKING INSTRUCTIONS]

