X204/701

NATIONAL QUALIFICATIONS 2006

MONDAY, 22 MAY
$1.00 \mathrm{PM}-4.00 \mathrm{PM}$

APPLIED
 MATHEMATICS ADVANCED HIGHER Mechanics

Read carefully

1. Calculators may be used in this paper.
2. Candidates should answer all questions.

Section A assesses the Units Mechanics 1 and 2
Section B assesses the Unit Mathematics for Applied Mathematics
3. Full credit will be given only where the solution contains appropriate working.

Section A (Mechanics 1 and 2)

Answer all the questions.

Candidates should observe that $g \mathrm{~m} \mathrm{~s}^{-2}$ denotes the magnitude of the

 acceleration due to gravity.Where appropriate, take its magnitude to be $9.8 \mathbf{m ~ s}^{-2}$.

A1. Relative to a rectangular coordinate system, the position of an ice skater at time t seconds is

$$
\mathbf{r}(t)=\left(\frac{1}{3} t^{3}-4 t^{2}\right) \mathbf{i}-\left(2 t^{2}-1\right) \mathbf{j}
$$

where \mathbf{i}, \mathbf{j} are the unit vectors in the x, y directions respectively and distances are measured in metres.
Find the speed of the ice skater at the instant when the acceleration is parallel to the y-axis.

A2. A piston oscillates about the point O with simple harmonic motion of amplitude 0.25 m .
Calculate the distance of the piston from O when its speed is half its maximum speed.

A3. A lift is initially at rest at ground level. It begins to accelerate upwards at $\frac{1}{8} \mathrm{~g} \mathrm{~m} \mathrm{~s}^{-2}$. At the same instant, a light bulb in the ceiling of the lift begins to fall towards the lift floor. The initial distance between the lift floor and the light bulb is 2 metres.
(a) Measuring distances in metres relative to the ground level, show that the position of the light bulb relative to the lift floor is

$$
\left(2-\frac{9}{16} g t^{2}\right) \mathbf{j}
$$

where \mathbf{j} is the unit vector in the upward vertical direction, and t is the time in seconds from the start of the motion of the lift.
(b) Calculate the distance the light bulb falls before hitting the lift floor.

A4. A golfer strikes a golf ball from O across a horizontal section of ground, giving the ball an initial speed of $V \mathrm{~m} \mathrm{~s}^{-1}$ at an angle α to the horizontal.
(a) Show that the range, R metres, of the golf ball is given by

$$
\begin{equation*}
R=\frac{V^{2}}{g} \sin 2 \alpha \tag{4}
\end{equation*}
$$

(b) The golfer intends the ball to land between two points A and B on the horizontal section such that $O A=L$ metres, $O B=2 L$ metres and $O A B$ is a straight line.
Given that the angle of projection of the ball is 15°, show that the initial speed must satisfy

$$
\begin{equation*}
\sqrt{2}<\frac{V}{\sqrt{g L}}<2 \tag{3}
\end{equation*}
$$

A5. A railway truck of mass $3 m$ kilograms travelling at $u \mathrm{~m} \mathrm{~s}^{-1}$ along a straight horizontal track, collides and couples with a stationary truck of mass m kilograms. Due to the action of a constant resistive force of magnitude R newtons, the two trucks come to rest T seconds after the collision.
(a) Determine an expression for R in terms of m, u and T.
(b) Find an expression, in terms of m and u, for the work done by R in bringing the trucks to rest.

A6. A conical pendulum consists of a bobbin of mass m kilograms attached to one end, B, of a light elastic string $A B$ of natural length l metres and modulus of elasticity $8 m g$ newtons. The other end, A, of the string is held fixed. The bobbin moves in a horizontal circle with centre vertically below A, such that the angle between the string $A B$ and the vertical is 45°.
(a) Determine, in terms of l, the extension of the string beyond its natural length.
(b) Show that the angular speed, ω radians per second, of the bobbin is given by

$$
\begin{equation*}
\omega^{2}=\frac{8 g}{(1+4 \sqrt{2}) l} . \tag{3}
\end{equation*}
$$

[Turn over

A7. Alan pulls a container with weight of magnitude W newtons at a constant speed up a rough plane, with coefficient of friction μ, inclined at an acute angle θ to the horizontal by means of a light inextensible rope, as shown below. The rope also makes an angle θ to the inclined plane.

(a) Show that the magnitude of the tension in the rope is given by

$$
\left(\frac{\tan \theta+\mu}{1+\mu \tan \theta}\right) W \text { newtons. }
$$

(b) Determine the range of values of θ for which the tension in the rope is less than the weight of the container.

A8. A mass m kilograms is attached to one end, A, of a light inextensible string of length L metres, the other end of which is fixed at a point O. Initially the mass hangs vertically below O with the string taut. The mass is then given a horizontal speed of $\sqrt{\frac{7}{2} g L} \mathrm{~m} \mathrm{~s}^{-1}$, causing it to start to travel in a vertical circle of centre O. Subsequently, the string $O A$ makes an angle θ with the downward vertical through O.
(a) When $\theta=45^{\circ}$, find expressions for:
(i) the speed of the mass in terms of L and g;
(ii) the magnitude of the tension in the string, in terms of m and g.
(b) Determine the value of θ at which the string first becomes slack.

A9. A box of mass m kilograms is dropped from rest from a point A at a height h metres above ground level. The box experiences a force of magnitude $m k v^{2}$ newtons due to air resistance, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the speed of the box and k is a constant.
(a) Show that the speed of the box satisfies the differential equation

$$
v \frac{d v}{d x}=g-k v^{2},
$$

where x metres is the distance fallen by the box from A.
(b) By making the substitution $w=g-k v^{2}$, or otherwise, solve the differential equation in (a) to show that

$$
v^{2}=\frac{g}{k}\left(1-e^{-2 k x}\right) .
$$

(c) Given that $k h=2$, calculate what fraction of the initial potential energy is used in doing work against the resistive force during the descent of the box to the ground.

Section B (Mathematics for Applied Mathematics)

Answer all the questions.

B1. Calculate A^{-1} where $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 2 & 3 & 1 \\ 2 & 2 & 1\end{array}\right)$.
Hence solve the system of equations

$$
\begin{array}{r}
x+y=1 \\
2 x+3 y+z=2 \\
2 x+2 y+z=1 .
\end{array}
$$

B2. Given that $y=\ln (1+\sin x)$, where $0<x<\frac{\pi}{2}$, show that $\frac{d^{2} y}{d x^{2}}=\frac{-1}{1+\sin x}$.

B3. Define $S_{n}=\sum_{r=1}^{n} r^{2}, n \geq 1$. Write down formulae for S_{n} and $S_{2 n+1}$.
Obtain a formula for $2^{2}+4^{2}+\ldots+(2 n)^{2}$.

B4. Solve the differential equation

$$
\begin{equation*}
\cos ^{2} x \frac{d y}{d x}=y \tag{5}
\end{equation*}
$$

given that $y>0$ and that $y=2$ when $x=0$.

B5. Use the substitution $1+x^{2}=u$ to obtain $\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x$.

B6. (a) Evaluate $\int_{0}^{1} x e^{2 x} d x$.
(b) Use part (a) to evaluate $\int_{0}^{1} x^{2} e^{2 x} d x$.
(c) Hence obtain $\int_{0}^{1}\left(3 x^{2}+2 x\right) e^{2 x} d x$.

