2013 Mathematics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA’s NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre’s responsibility to obtain the necessary copyright clearance. SQA’s NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.
Part One: General Marking Principles for Mathematics Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

(a) Marks for each candidate response must **always** be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Principal Assessor.

(b) Marking should always be positive i.e, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Mathematics Advanced Higher

The marking schemes are written to assist in determining the “minimal acceptable answer” rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates’ evidence, and apply to marking both end of unit assessments and course assessments.

General Marking Principles

These principles describe the approach taken when marking Advanced Higher Mathematics papers. For more detailed guidance please refer to the detailed Marking Instructions.

1 The main principle is to give credit for the skills demonstrated and the criteria met. Failure to have a correct method may not preclude a candidate gaining credit for their solution.

2 The answer to one part of a question, even if incorrect, can be accepted as a basis for subsequent dependent parts of the question.

3 The following are not penalised:
 - working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
 - legitimate variation in numerical values / algebraic expressions.

4 Full credit will only be given where the solution contains appropriate working. Where the correct answer might be obtained by inspection or mentally, credit may be given.

5 Sometimes the method to be used in a particular question is explicitly stated; no credit will be given where a candidate obtains the correct answer by an alternative method.

6 Where the method to be used in a particular question is not explicitly stated in the question paper, full credit is available for an alternative valid method. (Some likely alternatives are included but these should not be assumed to be the only acceptable ones.)

In the detailed Marking Instructions which follow, marks are shown alongside the line for which they are awarded. When marking, no comments at all should be made on the script. The total mark for each question should appear in one of the right-hand margins. The following codes should be used where applicable:

√ - correct; X – wrong; working underlined – wrong; tickcross – mark(s) awarded for follow-through from previous answer; ^ ^ - mark(s) lost through omission of essential working or incomplete answer; wavy or broken underline – bad form, but not penalised.
Part Two: Marking Instructions for each Question

<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 1. | Write down the binomial expansion of \((3x - \frac{2}{x^2})^4 \) and simplify your answer. | 4 | • Correct binomial coefficients. 2
• Correct powers of 3x and \(\frac{-2}{x^2} \).
• Simplifies indices. 1
• Completes simplification of coefficients. 3 |
| | \(4C_0(3x)^4\left(\frac{2}{x^2}\right)^0 + 4C_1(3x)^3\left(\frac{2}{x^2}\right)^1 + 4C_2(3x)^2\left(\frac{2}{x^2}\right)^2 \) \(+ 4C_3(3x)^1\left(\frac{2}{x^2}\right)^3 + 4C_4(3x)^0\left(\frac{2}{x^2}\right)^4 \) | | |
| | = \(81x^4 + 4 \cdot 27x^3 \cdot \frac{-2}{x^2} + 6 \cdot 9x^2 \cdot \frac{4}{x^4} + 4 \cdot 3x \cdot \frac{-8}{x^6} + 16 \cdot \frac{16}{x^8} \) | | |
| | = \(81x^4 - 216x + \frac{216}{x^2} - \frac{96}{x^3} + \frac{16}{x^8} \) | | |

Notes:
1.1 Accept negative indices.
1.2 Award \({n\choose r} \) or \(\left(\frac{n}{r}\right) \) form.
1.3 Including signs. “+ -” or “- -”: do not award •
1.4 Expanding wrong expression: \((3x - \frac{2}{x^2})^4 \), \(-1 \) only are available.
1.5 Expanding \((3x + \frac{2}{x^2})^4 \), \(1 \), \(2 \) only are available.

| 2. | Differentiate \(f(x) = e^{\cos x}\sin^2 x \). | 3 | • Uses product rule. 1
• First term correct. 2
• Second term correct. 3 |
	\(f'(x) = e^{\cos x}(-\sin x)\sin^2 x + e^{\cos x}\cdot 2\sin x\cos x \)		
	= \(-e^{\cos x}\sin^3 x + e^{\cos x}\cdot 2\sin x\cos x \)		Simplified alternatives.
	= \(e^{\cos x}(\sin 2x - \sin^3 x) \)		
	= \(e^{\cos x}\sin(2\cos x - \sin^3 x) \)		

Notes:
2.1 Evidence of method: Statement of the rule and evidence of progress in applying it.
OR Application showing the sum of two terms, both involving differentiation.
2.2 Signs switched: \(1 \), \(3 \) available for \(e^{\cos x}\sin^3 x - e^{\cos x}\cdot 2\sin x\cos x \) or equivalent.
3. Matrices A and B are defined by $A = \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix}$

(a) Find A^2.

(b) Find the value of p for which A^2 is singular.

(c) Find the values of p and x if $B = 3A^\top$.

\[A^2 = \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 16-2p & 4p + p \\ -8 - 2 & -2 + 1 \end{pmatrix} = \begin{pmatrix} 16 - 2p & 5p \\ -10 & 1 - 2p \end{pmatrix} \]

\[A^2 \text{ is singular when } \det A^2 = 0 \]

\[(16 - 2p)(1 - 2p) + 50p = 0 \]

\[16 - 34p + 4p^2 + 50p = 0 \]

\[4p^2 + 16p + 16 = 0 \]

\[4(p + 2)^2 = 0 \]

\[p = -2 \]

\[A^2 \text{ is singular when } A \text{ is singular, [i.e. when } \det A = 0] \]

\[4 + 2p = 0 \]

\[p = -2 \]

\[A' = \begin{pmatrix} 4 & -2 \\ p & 1 \end{pmatrix} \]

\[\begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix} = 3 \begin{pmatrix} 4 & -2 \\ p & 1 \end{pmatrix} \]

\[\begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 12 & -6 \\ 3p & 3 \end{pmatrix} \]

\[x = 12, \ p = \frac{1}{3} \]

Notes:

3.1 For (a) and (c), statement of answers only: award full marks. For (b), $p = -2$ only, award \(\bullet^3\) only (1 out of 2)

3.2 Misinterpretation of A^\top as inverse leading to $p = 0$ and $x = \frac{3}{4}$ OR to $p = \frac{-8}{3}$ and $x = -\frac{9}{4}$ OR to $p = 1$ and $x = \frac{1}{2}$ OR any other set of inconsistent equations: do not award \(\bullet^4\) or \(\bullet^5\) i.e. 0 out of 2.

3.3 Accept unsimplified answers.

3.4 Usually implied by next line.

3.5 For any equation based on answer to (a), correctly obtaining all possible solutions, including complex, \(\bullet^2\)\(\bullet^3\) both available. “No solutions”, “not possible” etc. \(\bullet^3\) not available, even if true.
The velocity, \(v \), of a particle \(P \) at time \(t \) is given by
\[
v = e^{3t} + 2e^t.
\]

(a) Find the acceleration of \(P \) at time \(t \).

\[
a = \frac{dv}{dt} = 3e^{3t} + 2e^t
\]

(b) Find the distance covered by \(P \) between \(t = 0 \) and \(t = \ln 3 \).

\[
s = \int_0^{\ln 3} v \, dt = \int_0^{\ln 3} (e^{3t} + 2e^t) \, dt
\]
\[
= \left[\frac{1}{3} e^{3t} + 2e^t \right]_0^{\ln 3}
\]
\[
= \left(\frac{1}{3} e^{3\ln 3} + 2e^{\ln 3} \right) - \left(\frac{1}{3} + 2 \right)
\]
\[
= \frac{1}{3} e^{3\ln 3} + 2e^{\ln 3} - \frac{7}{3}
\]
\[
= \frac{1}{3} \times 27 + 2 \times 3 - \frac{7}{3}
\]
\[
= \frac{38}{3} \text{ or } 12 \frac{2}{3} \text{ or equivalent}
\]

Notes:

4.1 Accept rounded answers without working between \(^1 \) and \(^5 \) to 3s.f. or better.
Accept 12.6, but not 12.6, 12 or 13.
4.2 Exceptionally, accept statement of formula as sufficient evidence for \(^1 \).
4.3 Evaluation of any incorrect function may be awarded \(^5 \) if evaluation of at least one \(e^{\ln} \) involved.
4.4 Candidates may integrate \(v \) to obtain an expression for \(s \) and evaluate from there. Do not penalise the omission of “+ c”.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 5. | Use the Euclidean algorithm to obtain the greatest common divisor of 1204 and 833, expressing it in the form $1204a + 833b$, where a and b are integers. | 4 | • Starting correctly.
• Obtains GCD.
Accept $(833, 1204) = 7$
• Equates GCD from • and evidence of correct back substitution.
• Correct form of final answer. |

1204 = $1 \times 833 + 371$
833 = $2 \times 371 + 91$
371 = $4 \times 91 + 7$
91 = 13×7 so gcd is 7

7 = $371 - 4 \times 91$

= $371 - 4 (833 - 2 \times 371)$

= $371 - 4 \times 833$

= $9 \times 371 - 4 \times 833$

= $9(1204 - 1 \times 833) - 4 \times 833$

= $9 \times 1204 - 13 \times 833$

$(a = 9, b = -13)$

Notes:

5.1 $7 = 371 - 4 \times 91$ not sufficient for •.
5.2 a, b do not need to be stated explicitly.
5.3 Accept a properly laid out grid approach.
5.4 Where candidate incorrectly starts “0=...” and correctly completes, • available. Leads to $a = -119$ and $b = 172$ (or to $a = 119$ and $b = -172$).
5.5 For stating “$a = 9, b = -13$” and nothing else, the question has not been answered, so 0/4.
5.6 Where $7 = 9 \times 1204 - 13 \times 833$, or arithmetically correct equivalent following from a wrong GCD with an inappropriate method or without supporting working, • is available, but • is not.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 6. | Integrate $\frac{\sec^2 3x}{1 + \tan 3x}$ with respect to x. | 4 | • Evidence knows correct form of integral.
• Coefficient correct.
• Use of ln or log$_e$.
• Completes, including use of $|mod|^1$. |
| | $f'(x)$ | $f(x)$ | $= \frac{1}{3}$...
.....ln....
.....$|l + \tan 3x|$ | $= \frac{1}{3} \ln |l + \tan 3x| + c$ |
| OR | $u = 1 + \tan 3x$ | $u = \tan 3x$ | $\frac{du}{dx} = 3\sec^2 3x$
$\frac{1}{3} du = \sec^2 3x \, dx$ | $\int \frac{1}{3} \frac{du}{u} = \cdots$
$= \frac{1}{3} \ln |u| + c$ | $= \frac{1}{3} \ln |1 + \tan 3x| + c$ |
| OR | $\int \frac{1}{1 + u} \, du$ | $\int \frac{1}{1 + u} \, du$ | $= \frac{1}{3} \ln |1 + \tan 3x| + c$ |

Notes:

6.1 Do not penalise omission of “+ c”.
6.2 $|Modulus|$ symbols necessary for 1.
6.3 Accept $\frac{1}{3} \log |1 + \tan 3x|$ for full marks.
6.4 Accept answer without working for full marks.
6.5 Award $\ln |1 + \tan 3x|$ 3 marks out of 4.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 7. | Given that \(z = 1 - \sqrt{3}i \), write down \(\bar{z} \) and express \(\bar{z}^2 \) in polar form. | 4 | • 1 Correct statement of conjugate.
• 2 One of \(r, \theta \) correct.
• 3 Second correct and accurate substitution.
• 4 Processes to answer.
• 2 Obtains \(\bar{z}^2 \) in Cartesian form.
• 3 One of \(r, \theta \) correct.
• 4 Second correct and accurate substitution. |

\[\bar{z} = 1 + \sqrt{3}i \]

\[\bar{z} = 2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \]

\[\bar{z}^2 = \left[2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \right]^2 = 4 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) \]

OR

\[\bar{z} = (1 + \sqrt{3}i)^2 = 1 + 2\sqrt{3}i - 3 = -2 + 2\sqrt{3}i \]

\[\bar{z}^2 = -2 + 2\sqrt{3}i = r(\cos \theta + i \sin \theta) \]

\[r = 4, \theta = \frac{2\pi}{3}, \bar{z}^2 = 4 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) \]

Notes:

7.1 Accept \(2\text{cis} \frac{\pi}{3} \) for •² & •³.

7.2 Accept angles expressed in degrees, i.e. 60°, 120°.

7.3 Where a candidate has applied de Moivre’s theorem to \(k(\cos \theta - i \sin \theta) \), do not penalise.

7.4 Correct polar form only. Answer in form \(k(\cos \theta - i \sin \theta) \) loses •⁴ unless correct form appears also.

7.5 Accept answers from \(-\pi\) to \(2\pi\) as being in polar form. For answers outside this range, do not award •¹.

7.6 Since it is possible to use the conjugate of \(z^2 \) to find \(\bar{z}^2 \) award •² for \(z = 2\text{cis} \frac{5\pi}{3} \) or \(2\text{cis}(- \frac{\pi}{3}) \) and •³ for \(z^2 = 4\text{cis} \frac{4\pi}{3} \) or \(4\text{cis}(- \frac{2\pi}{3}) \), but only •³ for \(\bar{z}^2 = 4\text{cis} \frac{4\pi}{3} \) or \(4\text{cis}(- \frac{2\pi}{3}) \).
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 8. | Use integration by parts to obtain $\int x^2 \cos 3x \, dx$. | 5 | - Evidence of integration by parts.\(^1\)
| | $\left[x^2 \frac{1}{3} \sin 3x \right] - \frac{2}{3} x \sin 3x \, dx$ | | - Correct choice of u, v'.\(^2\)
| | $= \left[\frac{1}{3} x^2 \sin 3x \right] - \left[-\frac{2}{9} x \cos 3x - \frac{2}{9} \cos 3x \, dx \right]$ | | - Accuracy of both expressions.\(^3\)
| | $= \frac{1}{3} x^2 \sin 3x + \frac{2}{9} x \cos 3x - \frac{2}{27} \sin 3x + c$ | | - Correct second application.\(^4\)
| | | | - Final integration and simplification.\(^5\) |

Notes:

8.1 Selection of parts wrong way round, leading to $\frac{1}{3} x^3 \cos 3x - \int -\frac{1}{3} x^3 \frac{3}{3} \sin 3x \, dx$ and no further, gains •\(^1\) & •\(^3\).

8.2 •\(^4\) & •\(^5\) available for follow through marks with a valid expression of equivalent difficulty.

8.3 Do not penalise omission of “+ c” in this case.

8.4 For a follow through mark to be awarded here, fractions and three (or more) trig functions are required.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 9. | Prove by induction that, for all positive integers n,
$\sum_{r=1}^{n}(4r^3 + 3r^2 + r) = n(n+1)^3$. | 6 | • Evaluation of both sides independently to 8.
• Inductive hypothesis (must include “Assume true…” or equivalent phrase).
• Addition of $(k + 1)$th term.
• Use of inductive hypothesis and first step in factorisation process.
• Processing and simplifying to arrive at second factor.
• Statement of result in terms of $(k+1)$ and valid statement of conclusion. |

Notes:

9.1 Markers to take extra care to ensure that no steps are omitted in the algebra required for •, • and •.

9.2 Alternative approach manipulating final form to “Aim: [or target] $k^4 + 7k^3 + 18k^2 + 20k + 8$” full marks are available, provided a valid conclusion is stated and working towards achieving “aim” is clear.

9.3 Acceptable phrases include: “If true for...”; “Suppose true for...”; “Assume true for...”; “Assume for $n = k$...”. However, not acceptable would include: “Consider $n=k$”; “Assume $n=k$...”; and “True for $n=k$”.

9.4 Correct statement of RHS in following lines where $k(k + 1)^3$ replaces $\sum_{r=1}^{n}(4r^3 + 3r^2 + r)$, award •.

9.5 $(k + 1)$th term may appear later in working, but still achieves award of •.

9.6 “Aim: [or target] $k^4 + 7k^3 + 18k^2 + 20k + 8$” award •.

9.7 Acceptable form for •: “If true for $n = k$, then true for $n = k + 1$”, but since true for $n = 1$, then true for all positive integers, n^n or equivalent. Final line may be omitted if final line of algebra “$(k+1)(k+2)^m$” appears as aim/target.

9.8 “RHS = 8, LHS = 8” or “true for $n = 1$” are insufficient, on their own, for •.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>Describe the loci in the complex plane given by:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) $</td>
<td>z + i</td>
<td>= 1$</td>
</tr>
<tr>
<td></td>
<td>(b) $</td>
<td>z - 1</td>
<td>=</td>
</tr>
<tr>
<td>a</td>
<td>Circle...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...centre $(0, -1)$ [or $-i$], radius 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR $z + i = x + iy + i = x + i(y + 1)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>x + (y + 1)i</td>
<td>^2 = 1$</td>
</tr>
<tr>
<td></td>
<td>$x^2 + (y + 1)^2 = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circle centre $(0, -1)$, radius 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

10a.1 $(0, -i)$ not acceptable.
10a.2 For diagrammatic approach, radius must be stated or clearly just touch x-axis, with centre identified as $(0, -1)$.
10a.5 $|x + (y + 1)i| = 1$ also acceptable for $\cdot 1$.
10a.6 Where there is no point given and no point marked on the y-axis, do not award $\cdot 2$.
10a.7 Where point on y-axis is identified as $-i$, $\cdot 2$ may be awarded.
10a.8 Correct statement of centre and radius alone not sufficient for $\cdot 1$. Must explicitly state locus a circle or sketch.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. b</td>
<td>(continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set of points equidistant from (1, 0) and (– 5, 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Straight line…</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\ldots x = -2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR (</td>
<td>z - 1</td>
<td>^2 =</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>(x - 1) + iy</td>
<td>^2 =</td>
</tr>
<tr>
<td></td>
<td>((x-1)^2 + y^2 = (x+5)^2 + y^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2x + 1 = 10x + 25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-24 = 12x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x = -2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>which is a straight line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x = -2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

10b.3 Statement “line \(x = -2 \)” only, award full (3) marks. Statement “\(x = -2 \)” only loses \(\bullet^1 \) and \(\bullet^5 \), i.e. 1 out of 3.
10b.4 \(\sqrt{(x - 1)^2 + y^2} = \sqrt{(x + 5)^2 + y^2} \) and no further, award \(\bullet^3 \), “Equates moduli”, only.
10b.8 For this statement with squared “\^2” omitted from both sides, \(\bullet^3 \) may be awarded.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 11. | A curve has equation \(x^2 + 4xy + y^2 + 11 = 0\) | 6 | • Differentiates \(x^2\) and first product.
 • Differentiates \(y^2 + 11 = 0\) correctly.
 • Evaluates \(\frac{dy}{dx}\) correctly.
 • Evaluates \(\frac{dy}{dx}\) after rearranging.
 • Differentiates first three terms of \((\Delta)\) correctly, including a product.
 • Differentiates final product of \((\Delta)\) correctly.
 • Evaluates \(\frac{d^2y}{dx^2}\).
 • Evidence of valid application of quotient (or product) rule.
 • Differentiates correctly.
 • Evaluates \(\frac{d^2y}{dx^2}\). |
| | Find the values of \(\frac{dy}{dx}\) and \(\frac{d^2y}{dx^2}\) at the point \((-2, 3)\). | | 11.1 Where a carried error is incorporated, there must be at least one instance of evaluating \(\frac{dy}{dx}\) to earn \(\bullet^6\).
11.2 Where the candidate has erroneously prefixed the question with “\(\frac{dy}{dx} = \)” and subsequently ignores \(= 0\), leading to \(\frac{dy}{dx} = \frac{8}{3}\) and \(\frac{d^2y}{dx^2} = \frac{338}{27}\) award 5 out of 6, losing \(\bullet^2\).
11.3 Where the candidate has simplified subsequent working with an error in first three marks, any three terms including a product could earn \(\bullet^4\). A second product would make \(\bullet^5\) also available.
11.4 Evaluation includes any simplification of differentiated expression in both parts. Therefore \(\bullet^1\) and \(\bullet^6\) awarded for correct evaluation of unsimplified derivative in each case. |
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 12. | Let n be a natural number. For each of the following statements, decide whether it is true or false. If true, give a proof, if false, give a counterexample.
A If n is a multiple of 9 then so is n^2.
B If n^2 is a multiple of 9 then so is n. |
| A | Suppose $n = 9m$ for some natural number [positive integer], m.
Then $n^2 = 81m^2 = 9(9m^2)$
Hence n^2 is a multiple of 9, so A is true. | 4 | • Generalisation, using different letter.
• Correct multiplication and 9 extracted as a factor.
• Conclusion of proof and state A true. |
| B | **False.** Accept any valid counterexample: $n = 3, 6, 12, 15, 21$ etc | | • Valid counterexample and conclusion. |

Notes:
12.1 Final mark (•) not available unless evidence of a proof attempted.
12.2 No credit given for numerical examples without generalisation.
12.3 Do not penalise failure to specify that m is a natural number.
12.4 Any number of numerical examples on their own secures no marks.
12.5 Counterexamples must have n as a natural number (positive integer).
12.6 Starting $n^2 = (9n)^2$ i.e. using the same letter on both sides, leads inexorably to 0/3.
12.7 A ‘word-based’ proof is very unlikely to be awarded full marks for A as the criteria for • will be very difficult to achieve with words alone. A clear, logical answer of this type can access • and •.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. a</td>
<td>Part of the straight line graph of a function (f(x)) is shown. </td>
<td>2</td>
<td>•1 Straight line with negative gradient crossing the positive sections of the (x)- and (y)-axes. •2 Both intersections correctly annotated.</td>
</tr>
<tr>
<td></td>
<td>(a) Sketch the graph of (f^{-1}(x)), showing points of intersection with the axes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) State the value of (k) for which (f(x) + k) is an odd function.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Find the value of (h) for which (</td>
<td>f(x + h)</td>
<td>) is an even function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. b</td>
<td>(y = f(x) - c) is odd. (\therefore k = -c)</td>
<td></td>
<td>•3 Correctly stated.</td>
</tr>
<tr>
<td>13. c</td>
<td>(y =</td>
<td>f(x + 2)</td>
<td>) is even. (\therefore h = 2)</td>
</tr>
</tbody>
</table>

Notes:

13.1 Answer \(h = 2 \) only, no other working or diagram, award full marks [2 out of 2].
13.2 Where a candidate has clearly used their diagram from part (a) as the basis for (b) and (c), leading to \(k = -2 \) and \(h = c \) (with working/further diagram) award •4 •5 and not •3 (2 out of the three marks for (a) and (b)). Statement of above answers only, zero out of 3.
13.3 An accurate diagram of \(y = f(x + 2) \), on its own, gains no marks.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 14. | Solve the differential equation | 11 | • Correct auxiliary equation (or equivalent).¹
• Correct solution of auxiliary equation and statement of complimentary function.
• Correct form of particular integral.^{1,7}
• Correct first derivative of P.I.^{2,3}
• Correct differentiation of first derivative.⁴
• For correctly substituting expressions for both derivatives.
• For correctly solving to obtain C.⁵
• Correct collation of above answers to obtain full General Solution.⁶
• Derivative of G.S.
• Use of i.c.s to find first constant correctly.
• Second constant. States solution.⁶ |
| | \(\frac{d^2y}{dx^2} - 6 \frac{dy}{dx} + 9y = 4e^{3x} \), given that \(y = 1 \) and \(\frac{dy}{dx} = -1 \) when \(x = 0 \) | | |
| | \(m^2 - 6m + 9 = 0 \)
\((m - 3)^2 = 0 \)
\(m = 3 \) | | |
| | C.F. \(y = Ae^{3x} + Bxe^{3x} \) | | |
| | P.I. Try \(y = Cx^2e^{3x} \) | | |
| | \(\frac{dy}{dx} = 2Cxe^{3x} + 3Cx^2e^{3x} \) | | |
| | \(\frac{d^2y}{dx^2} = 2Ce^{3x} + 6Cxe^{3x} + 6Cx^2e^{3x} + 9Cx^2e^{3x} \) | | |
| | \(2Ce^{3x} + 6Cxe^{3x} + 6Cx^2e^{3x} + 9Cx^2e^{3x} \)
\(-6(2Cxe^{3x} + 3Cx^2e^{3x}) + 9Cx^2e^{3x} = 4e^{3x} \)
\(2Ce^{3x} = 4e^{3x} \Rightarrow C = 2 \) | | |
| | G.S. \(y = Ae^{3x} + Bxe^{3x} + 2x^2e^{3x} \) | | |
| | \(\frac{dy}{dx} = 3Ae^{3x} + Be^{3x} + 3Bxe^{3x} + 4xe^{3x} + 6x^2e^{3x} \) | | |
| | When \(x = 0, y = 1 \) \(A = 1 \)
\(\frac{dy}{dx} = -1 \)
\(-1 = 3 + B \Rightarrow B = -4 \) | | |
<p>| | P.S. (y = e^{3x} - 4xe^{3x} + 2x^2e^{3x}) | | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 14 Notes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Accept ((Cx^2 + Dx + E)e^{3x}) or equivalent for •3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.2</td>
<td>Accept correctly differentiated version of ((Cx^2 + Dx + E)e^{3x}) or equivalent for •4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td>Must be of equivalent difficulty if wrong P.I. used to obtain •4. i.e. contains at least one use of prod/quot rule.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4</td>
<td>Must be of equivalent difficulty if wrong 1st derivative used to obtain •5 i.e. contains at least one use of prod/quot rule.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>And other constants, e.g. D and E = 0, where using alternative P.I.s as note 14.1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td>Not needed if subsequent lines incorporate information, especially •9 or •11.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.7</td>
<td>Incorrectly using (y = Cxe^{3x}) for P.I. leading to (A = 1) and (B = -4), •4 •6 •9 •10 •11 still available, i.e. max 7 (out of 11). To be awarded •6, a correct differentiation of the first derivative is required as well as correct substitution.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.8</td>
<td>Incorrectly using (y = Ce^{3x}) for P.I. leading to (A = 1) and (B = -4), •9 •10 •11 still available. i.e. max 5 (out of 11).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.9</td>
<td>Incorrectly using (y = Ae^{3x} + Be^{3x}) and using (y = Ce^{3x}) for P.I., •9 still available. i.e. max 2 (out of 11).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.10</td>
<td>Incorrectly using (y = Ae^{3x} + Be^{3x}) and using (y = Cxe^{3x}) for P.I., •4 •9 still available. i.e. max 3 (out of 11).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.11</td>
<td>Do not penalise omission of “= 0” in first two lines.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Expected Answer/s</td>
<td>Max Mark</td>
<td>Additional Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>15. a</td>
<td>(a) Find an equation of the plane π_1, through the points $A(0, -1, 3)$, $B(1, 0, 3)$ and $C(0, 0, 5)$. (b) π_2 is the plane through A with normal in the direction $-j + k$. Find an equation of the plane π_2. (c) Determine the acute angle between planes π_1 and π_2.</td>
<td>4 2 3</td>
<td>• 1 Any two correct 1 vectors. 2 • 2 Evidence of appropriate method. 3 • 3 Obtains vector product (any form). 4 • 4 Obtains constant and states equation of plane.</td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{AB} = \begin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}$ $\overrightarrow{AC} = \begin{pmatrix} 0 \ 1 \ 2 \end{pmatrix}$ OR $\overrightarrow{BC} = \begin{pmatrix} -1 \ 0 \ 2 \end{pmatrix}$</td>
<td></td>
<td>$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} i & j & k \ 1 & 1 & 0 \ 0 & 1 & 2 \end{vmatrix}$ or equivalent $= 2i - 2j + k$ $2x - 2y + z = 2 \times 0 - 2 \times -1 + 1 \times 3$ \begin{align} \pi_1 : & 2x - 2y + z = 5 \ \text{OR } r &= \begin{pmatrix} 0 \ -1 \ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} + \mu \begin{pmatrix} 0 \ 1 \ 2 \end{pmatrix} \end{align}$ or equivalent</td>
</tr>
<tr>
<td></td>
<td>b $\overrightarrow{AB} = \begin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}$ $\overrightarrow{AC} = \begin{pmatrix} 0 \ 1 \ 2 \end{pmatrix}$ OR $\overrightarrow{BC} = \begin{pmatrix} -1 \ 0 \ 2 \end{pmatrix}$</td>
<td>0 \times 0 + (-1) \times (-1) + 1 \times 3 = 4 \begin{align} \pi_2 : & -y + z = 4 \ \text{OR } r &= \begin{pmatrix} 0 \ -1 \ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} + \mu \begin{pmatrix} 0 \ 1 \ 2 \end{pmatrix} \end{align}$ or equivalent</td>
<td>• 5 Evidence of appropriate method. 5 • 6 Processes to obtain equation of second plane.</td>
</tr>
<tr>
<td></td>
<td>c Normal vectors: $n_1 = \begin{pmatrix} 2 \ -2 \ 1 \end{pmatrix}$ and $n_2 = \begin{pmatrix} 0 \ -1 \ 1 \end{pmatrix}$, $</td>
<td>n_1</td>
<td>= \sqrt{3}$, $</td>
</tr>
</tbody>
</table>

P.T.O. for alternative method for question 15(c) and marking notes for all parts of question 15.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. c</td>
<td>OR $= 2i - 2j + k$, so $\left</td>
<td>2i - 2j + k \right</td>
<td>= 3$ and $\left</td>
</tr>
<tr>
<td></td>
<td>$3 = \left</td>
<td>n_1 \right</td>
<td>\cdot \left</td>
</tr>
<tr>
<td></td>
<td>$\cos \theta = \frac{1}{\sqrt{2}}$ so $\theta = \frac{\pi}{4}$ (or 45°)</td>
<td>8</td>
<td>Processes to statement of answer.</td>
</tr>
</tbody>
</table>

Notes:

15.1 i.e. non-parallel.
15.2 Although unconventional, accept vectors written horizontally.
15.3 Do not award 7 where co-ordinates of A/B/C used.
15.4 Award mark for obtaining value of constant = 4 (or follow-through).
15.5 Where candidate uses 90°- θ, only 7 and 8 available. So “θ = 45° so acute angle = 90° - 45° = 45°” scores max of 2/3.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>In an environment without enough resources to support a population greater than 1000, the population $P(t)$ at time t is governed by Verhurst’s law</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{dP}{dt} = P(1000 - P)$</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Show that $\ln \frac{P}{1000 - P} = 1000t + C$ for some constant C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hence show that $P(t) = \frac{1000K}{K + e^{-1000t}}$ for some constant K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Given that $P(0) = 200$, determine at what time t, $P(t) = 900$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{dP}{dt} = P(1000 - P)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>So $\int \frac{dP}{P(1000 - P)} = \int dt$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{P(1000 - P)} = \frac{A}{P} + \frac{B}{1000 - P}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A = \frac{1}{1000}$, $B = \frac{1}{1000}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{1000} \int \left(\frac{1}{P} + \frac{1}{1000 - P} \right) dP = \int dt$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\ln P - \ln(1000 - P) = 1000t + c$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\ln \frac{P}{1000 - P} = 1000t + c$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{P}{1000 - P} = Ke^{1000t} (where \ K = e^c)$</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>- Separates variables.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Appropriate form of partial fractions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Obtains correct values of both A and B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Integrates correctly, including ‘$+c$’.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Accurately converts to exponential form.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Expected Answer/s</td>
<td>Max Mark</td>
<td>Additional Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| 16. | (continued)
\[P = 1000Ke^{1000t} - PKe^{1000t},\]
\[P + PKe^{1000t} = 1000Ke^{1000t},\]
\[P = \frac{1000Ke^{1000t}}{1 + Ke^{1000t}},\]
\[= \frac{1000K}{e^{-1000t} + K} \quad \left(\text{or} \quad \frac{1000e^c}{e^{-1000t} + e^c}\right)\]
\[\text{Since} \quad P(0) = 200, \quad 200 = \frac{1000K}{1 + K}\]
\[K = \frac{1}{4} \quad \left(\text{or} \ 0.25\right)\]
\[\text{Require} \quad 900 = \frac{1000 \times 0.25}{0.25 + e^{-1000t}}\]
\[225 + 900e^{1000t} = 250\]
\[e^{1000t} = 36\]
\[1000t = \ln 36\]
\[t = \frac{1}{1000} \ln 36\]
\[\left[\text{or} \ 0.003584 \ (4\text{sf})\right]\]

Notes:

16.1 Explanation of new constant not required. Do not penalise bad form when changing constants. E.g., for \(RHS = e^{1000t} + c\), award 5.

16.2 Both steps required as final result given in question.

16.3 Accept statement of value of \(K\) (consistent with previous working).

16.4 Accept approximation (2sf or better), i.e. 0.0036 or \(3 \times 10^{-3}\).

16.5 Do not penalise omission of integration symbols for 4.

16.6 Candidates putting \(\ln P + \ldots\) lose 4.
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 17. | Write down the sums to infinity of the geometric series $1 + x + x^2 + x^3 + \ldots$ and $1 - x + x^2 - x^3 + \ldots$ Valid for $|x| < 1$. Assuming that it is permitted to integrate an infinite series term by term, show that, for $|x| < 1$, \[
\ln\left(\frac{1 + x}{1 - x}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots\right)
\] Show how this series can be used to evaluate $\ln 2$. Hence determine the value of $\ln 2$ correct to 3 decimal places. | 7 | • Correct statement of sum. • Correct statement of sum. • Correct integration of both sides. • Correct evaluation of c. • Correct integration of both sides. • Evidence of appropriate method. • Appropriate intermediate step. • Adds series. • Integrates LHS • Integrates $\ln(1 + x)$ • Integrates $\ln(1 - x)$ |
<table>
<thead>
<tr>
<th>Question</th>
<th>Expected Answer/s</th>
<th>Max Mark</th>
<th>Additional Guidance</th>
</tr>
</thead>
</table>
| 17. | (continued) Putting $x = 0$ gives $c = 0$.
$\left[\ln \frac{1 + x}{1 - x} \right]$ as required. OR
$\begin{align*}
f(x) &= \ln \left(\frac{1 + x}{1 - x} \right) \\
f(0) &= 0 \\
f'(x) &= 2(1 - x^2)^{-1} \text{ or equivalent} \\
f'(0) &= 2 \\
f''(x) &= 4x(1 - x^2)^{-2} \\
f''(0) &= 0 \\
f'''(x) &= 16x^2(1 - x^2)^{-3} + 4(1 - x^2)^{-2} \\
f'''(0) &= 0 \\
f^{(4)}(x) &= 96x^3(1 - x^2)^{-4} + 48x(1 - x^2)^{-3} \\
f^{(4)}(0) &= 0 \\
f^{(5)}(x) &= 768x^4(1 - x^2)^{-5} + 576x^2(1 - x^2)^{-4} + 48(1 - x^2)^{-3} \\
f^{(5)}(0) &= 48 \\
\therefore f(x) &= 0 + 2.1x + 0 + \frac{4}{3}x^3 + 0x^4 + \frac{48}{5}x^5 + \cdots \\
&= 2x + \frac{2}{3}x^3 + \frac{2}{5}x^5 + \cdots \\
so f(x) &= \ln \left(\frac{1 + x}{1 - x} \right) = 2 \left(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots \right) \text{ as required.} \\
Now choose x such that $\frac{1 + x}{1 - x} = 2$,
$\text{ie } 1 + x = 2 - 2x, \text{ so } x = \frac{1}{3}$
So $\ln 2 = 2 \left(\frac{1}{3} + \frac{1}{81} + \frac{1}{1215} + \frac{1}{15309} + \cdots \right)$
$= 0.693$ to 3 d.p. | 7 | Correct evaluation of c. \(^{1,3}\)
\begin{itemize}
\item Evidence of appropriate use of Maclaurin. \(^{5,7}\)
\item All five derivatives correct OR first two derivatives and first three evaluations correct. \(^{3}\)
\item All six evaluations correct OR final three derivatives correct and final three evaluations correct. \(^{5}\)
\item Correctly substitutes obtained values into Maclaurin. \(^{6}\)
\item Simplification en route to required result. \(^{8}\)
\item States appropriate equation. \(^{4}\)
\item Correctly solves equation. \(^{9}\)
\item Obtains accurate approximation. \(^{2,6}\)
\end{itemize}

Notes:
17.1 Do not penalise omission of ‘$+ c$’ for \(^3\) or \(^5\) (or \(^6\) in alternative method). Mark for \(^4\) transferable: for the explicit evaluation of constant of integration on either (or both) of the integrals, award \(^{5}\) (or \(^7\) in alternative method).
17.2 To illustrate that series used (and not calculator), all 4 terms must appear for this mark to be awarded. For approximations, four or more decimal places in all four terms are required.
17.3 Any assumption that the two constants of integration are equal and can therefore be “cancelled out” loses \(^5\).
17.4 For an unsupported statement that $x = \frac{1}{3}$ award \(^8\) and \(^9\).
17.5 For attempts using Maclaurin’s Theorem, only terms up to and including x^5 are required for \(^3\), \(^4\), and \(^5\).
17.6 Attempts utilising Maclaurin’s Theorem do not need to continue to the term in x^7, as the wording of the question implies continuation of the established pattern. Hence errors in calculating the terms in x^6 and x^7 may be considered working subsequent to a correct answer.
17.7 Differentiation of either $\ln \left(\frac{1 + x}{1 - x} \right)$ or both of $\ln (1 + x)$ and $\ln (1 - x)$. Also accept differentiation of either \ln expression and subsequent substitution of $(-x)$ for x to obtain the other (for \(^3\), \(^4\), and \(^5\), \(^6\) for combining and \(^7\) for simplifying. Substitution of $\left(\frac{1 + x}{1 - x} \right)$ for x is not accepted as it leads to an expansion which cannot be approximated in the same way.
17.8 Simplification to penultimate line or equivalent required for award of \(^7\).