X100/13/01

NATIONAL	WEDNESDAY, 22 MAY	MATHEMATICS
QUALIFICATIONS	$1.00 \mathrm{PM}-4.00 \mathrm{PM}$	ADVANCED HIGHER
2013		

Read carefully

1 Calculators may be used in this paper.
2 Candidates should answer all questions.
$3 \quad$ Full credit will be given only where the solution contains appropriate working.

Answer all the questions

1. Write down the binomial expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{4}$ and simplify your answer.
2. Differentiate $f(x)=e^{\cos x} \sin ^{2} x$.
3. Matrices A and B are defined by $A=\left(\begin{array}{cc}4 & p \\ -2 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}x & -6 \\ 1 & 3\end{array}\right)$.
(a) Find A^{2}.
(b) Find the value of p for which A^{2} is singular.
(c) Find the values of p and x if $B=3 A^{\prime}$.
4. The velocity, v, of a particle P at time t is given by

$$
v=e^{3 t}+2 e^{t}
$$

(a) Find the acceleration of P at time t.
(b) Find the distance covered by P between $t=0$ and $t=\ln 3$.
5. Use the Euclidean algorithm to obtain the greatest common divisor of 1204 and 833, expressing it in the form $1204 a+833 b$, where a and b are integers.
6. Integrate $\frac{\sec ^{2} 3 x}{1+\tan 3 x}$ with respect to x.
7. Given that $z=1-\sqrt{3} i$, write down \bar{z} and express \bar{z}^{2} in polar form.
8. Use integration by parts to obtain $\int x^{2} \cos 3 x d x$.
9. Prove by induction that, for all positive integers n,

$$
\begin{equation*}
\sum_{r=1}^{n}\left(4 r^{3}+3 r^{2}+r\right)=n(n+1)^{3} \tag{6}
\end{equation*}
$$

10. Describe the loci in the complex plane given by:
(a) $|z+i|=1$;
(b) $|z-1|=|z+5|$.
11. A curve has equation

$$
x^{2}+4 x y+y^{2}+11=0
$$

Find the values of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(-2,3)$.
12. Let n be a natural number.

For each of the following statements, decide whether it is true or false. If true, give a proof; if false, give a counterexample.

A If n is a multiple of 9 then so is n^{2}.
B If n^{2} is a multiple of 9 then so is n.
13. Part of the straight line graph of a function $f(x)$ is shown.

(a) Sketch the graph of $f^{-1}(x)$, showing points of intersection with the axes.
(b) State the value of k for which $f(x)+k$ is an odd function.
(c) Find the value of h for which $|f(x+h)|$ is an even function.
14. Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=4 e^{3 x}, \text { given that } y=1 \text { and } \frac{d y}{d x}=-1 \text { when } x=0 .
$$

15. (a) Find an equation of the plane π_{1}, through the points $A(0,-1,3), B(1,0,3)$ and $C(0,0,5)$.
(b) π_{2} is the plane through A with normal in the direction $-\mathbf{j}+\mathbf{k}$.

Find an equation of the plane π_{2}.
(c) Determine the acute angle between planes π_{1} and π_{2}.
16. In an environment without enough resources to support a population greater than 1000 , the population $P(t)$ at time t is governed by Verhurst's law

$$
\frac{d P}{d t}=P(1000-P) .
$$

Show that

$$
\ln \frac{P}{1000-P}=1000 t+C \quad \text { for some constant } C
$$

Hence show that

$$
P(t)=\frac{1000 K}{K+e^{-1000 t}} \quad \text { for some constant } K
$$

Given that $P(0)=200$, determine at what time $t, P(t)=900$.
17. Write down the sums to infinity of the geometric series

$$
1+x+x^{2}+x^{3}+\ldots \ldots
$$

and

$$
1-x+x^{2}-x^{3}+\ldots \ldots .
$$

valid for $|x|<1$.
Assuming that it is permitted to integrate an infinite series term by term, show that, for $|x|<1$,

$$
\ln \left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \ldots .\right)
$$

Show how this series can be used to evaluate $\ln 2$.
Hence determine the value of $\ln 2$ correct to 3 decimal places.

