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Read carefully

1 Calculators may be used in this paper.

2 Candidates should answer all questions.

3 Full credit will be given only where the solution contains appropriate working.
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Answer all the questions

 1. Write down the binomial expansion of              and simplify your answer.

 2. Differentiate f(x) = ecosxsin2x.

 3. Matrices A and B are defined by A=    .

  (a) Find A2.

  (b) Find the value of p for which A2 is singular.

  (c) Find the values of p and x if B = 3A'.

 4. The velocity, v, of a particle P at time t is given by

    v = e3t + 2et.

  (a) Find the acceleration of P at time t.

  (b) Find the distance covered by P between t = 0 and t = ln3.

 5. Use the Euclidean algorithm to obtain the greatest common divisor of 1204 and 
833, expressing it in the form 1204a + 833b, where a and b are integers.

 6. Integrate               with respect to x.

 7. Given that z =              , write down     and express   2 in polar form.

 8. Use integration by parts to obtain 

 9. Prove by induction that, for all positive integers n,

          .
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 10. Describe the loci in the complex plane given by:

  (a) z + i = 1;

  (b) z – 1= z + 5.

 11. A curve has equation

      x2 + 4xy + y2 + 11 = 0.

  Find the values of                      at the point (–2, 3).

 12. Let n be a natural number.
  For each of the following statements, decide whether it is true or false.
  If true, give a proof; if false, give a counterexample.

  A If n is a multiple of 9 then so is n2.

  B If n2 is a multiple of 9 then so is n.

 13. Part of the straight line graph of a function f(x) is shown.

  (a) Sketch the graph of f –1(x), showing points of intersection with the axes.

  (b) State the value of k for which f(x) + k is an odd function.

  (c) Find the value of h for whichf(x + h)is an even function.
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14.  Solve the differential equation 

                , given that  y = 1 and       = –1 when x = 0.

 15. (a) Find an equation of the plane p1, through the points A(0, –1, 3), B(1, 0, 3) and 
C(0, 0, 5).

  (b) p2 is the plane through A with normal in the direction –j + k.

   Find an equation of the plane p2.

  (c) Determine the acute angle between planes p1 and p2.

 16. In an environment without enough resources to support a population greater than 
1000, the population P(t) at time t is governed by Verhurst’s law 

  Show that

         for some constant C.

  Hence show that

         for some constant K.

  Given that P(0) = 200, determine at what time t, P(t) = 900.

 17. Write down the sums to infinity of the geometric series

   1 + x + x2 + x3 + .......

  and

   1 – x + x2 – x3 + .......

  valid for  x<1.

  Assuming that it is permitted to integrate an infinite series term by term,
  show that, for x<1,

   ln

  Show how this series can be used to evaluate ln 2.

  Hence determine the value of ln 2 correct to 3 decimal places.
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[END OF QUESTION PAPER]

d y

dx

dy
dx

y e x
2

2
36 9 4− + =

dy
dx

dP
dt

P P= −( ).1000

ln P
P

t C
1000

1000
−

= +

P t
K

K e t( ) =
+ −

1000
1000

1
1

2
3 5

3 5+
−







= + + +






x
x

x x x ....... .


