2018 Mathematics of Mechanics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2018
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \bullet^{5} & \bullet 6 \\
.^{5} & x=2 & x=-4 \\
\bullet^{6} & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{\circ} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\bullet^{6} y=5 \text { and } y=-7 \quad \bullet^{6} x=-4 \text { and } y=-7
$$

You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1) \text { written as } \\
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& =2 x^{4}+5 x^{3}+8 x^{2}+7 x+2
\end{aligned}
$$

gains full credit

- repeated error within a question, but not between questions or papers
(m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
(p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.
(q) Any rounded answer should be accurate to three significant figures (or one decimal place for angles given in degrees) unless otherwise stated. If an answer differs due to rounding or prior rounding the candidate may be penalised. Only penalise one mark in any question.

Detailed marking instructions for each question

Notes:

1. accept distance answers in metres or kilometres

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
2.	(a)	- 1 use correct form of partial fractions -2 equate numerators - ${ }^{3}$ find one constant - ${ }^{4}$ find remaining constants and state the partial fractions	$\begin{aligned} & \frac{13+6 x+5 x^{2}}{(1+x)(2-x)(3+x)} \\ & =\frac{A}{1+x}+\frac{B}{2-x}+\frac{C}{3+x} \end{aligned}$ -2 $13+6 x+5 x^{2}=A(2-x)(3+x)+$ $B(1+x)(3+x)+C(2-x)(1+x)$ $\bullet^{3} A=2$ or $B=3$ or $C=-4$ - ${ }^{4} A=2, B=3, C=-4$ $\frac{2}{1+x}+\frac{3}{2-x}-\frac{4}{3+x}$	4

Notes:

Commonly Observed Responses:

(b)	-5 rewrite integral and integrate one term correctly - ${ }^{6}$ complete integration -7 substitute and simplify to correct form	$\begin{gathered} \int^{5} \int_{0}^{1} \frac{2}{1+x}+\frac{3}{2-x}-\frac{4}{3+x} d x \\ =2 \ln \|1+x\| \ldots \ldots \end{gathered}$ $\bullet^{6} \ldots . .-3 \ln \|2-x\|-4 \ln \|3+x\|$ $\begin{array}{ll} & (2 \ln 2-3 \ln 1-4 \ln 4) \\ \bullet^{7} & -(2 \ln 1-3 \ln 2-4 \ln 3) \\ = & \ln \frac{81}{8} \end{array}$	3

Notes:

Commonly Observed Responses:

Notes:

1. • ${ }^{4}$ initial or final momentum should begin to be calculated

Commonly Observed Responses:

$\bullet^{3} a=+2.45 \mathrm{~ms}^{-2}$ leading to $\bullet^{5} v=10.4 \mathrm{~ms}^{-1}$

Question	Generic scheme	Illustrative scheme	Max mark
Alternative solution (work/energy principle)			
3.	- ${ }^{1}$ consider energy at start and immediately before collision -2 calculate work done by friction -3 use conservation of energy to calculate speed just before collision -4 know to use conservation of momentum and start substitution - ${ }^{5}$ calculate v	start $E_{K}=\frac{1}{2} m v^{2}=\frac{1}{2} \times 10 \times 12^{2}=720 J$ before collision $E_{K}=\frac{1}{2} m v^{2}$ ${ }^{-2}$ Friction $=\mu \mathrm{mg}=0.25 \times 10 \times 9.8=24.5 \mathrm{~N}$ work $=F s=24.5 \times 20=490 \mathrm{~J}$ $\begin{aligned} & 720-\frac{1}{2} \mathrm{~m} v^{2}=490 \Rightarrow \frac{1}{2} \times 10 \times v^{2}=230 \mathrm{~J} \\ & v=\sqrt{\frac{230 \times 2}{10}}=\sqrt{46}=6.78 \mathrm{~ms}^{-1} \end{aligned}$ - ${ }^{4} m_{1} u_{1}+m_{2} u_{2}=\left(m_{1}+m_{2}\right) v$ - $510+6 \cdot 78+5 \times 0=15 v$ $v=4.52 \mathrm{~ms}^{-1}$	5
Notes: 1. ${ }^{4}$ initial or final momentum should begin to be calculated			
Commonly Observed Responses:			

Notes:

1. \bullet^{1} clear evidence to show multiplication by the derivative of $\sec ^{2} x$.

Commonly Observed Responses:

Question		Generic Scheme	Illustrative Scheme	Max Mark
7.	(a)	-1 calculate ω - ${ }^{2}$ state equation for position and start to solve \bullet^{3+4} obtain values for t	- $1 \omega=\frac{2 \pi}{10} \quad \omega=\frac{\pi}{5}$ -2 $x=6 \sin \frac{\pi}{5} t \quad 6 \sin \frac{\pi}{5} t=4$ - ${ }^{3+4} \quad \frac{\pi}{5} t=0.730,2.41$ $t=1 \cdot 16,3 \cdot 84$	4
Notes: 1. \bullet^{3+4} Horizontal and vertical marking.				
Commonly Observed Responses:				
	(b)	Method 1 $\cdot{ }^{5}$ use second value of t to find v ${ }^{6}$ evaluate and interpret solution	Method 1 $v=a \omega \cos \omega t$ $\cdot{ }^{5}$ $v=\frac{6 \pi}{5} \cos \left(\frac{\pi}{5} \times 3 \cdot 84\right)$ -6 $v=-2.81 \mathrm{~ms}^{-1}$ so particle will be travelling back towards A with speed of $2.81 \mathrm{~ms}^{-1}$	2
Notes: ${ }^{6}$ only available where v is negative.				
Commonly Observed Responses:				
	(b)	Method 2 ${ }^{5}$ use second value of t to find v - ${ }^{6}$ evaluate and interpret solution.	Method 2 $\begin{gathered} v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \\ v^{2}=\left(\frac{\pi}{5}\right)^{2}\left(6^{2}-4^{2}\right) \end{gathered}$ - $6=-2.81 \mathrm{~ms}^{-1}$ so for second time particle will be travelling back towards A with a speed of $2.81 \mathrm{~ms}^{-1}$.	2
Notes:				

Question		Generic scheme	Illustrative scheme	Max mark
9.	(a)	Method 1 -1 use appropriate formula for time of half flight with substitution - ${ }^{2}$ find expression for total time of flight \bullet^{3} find expression for range using total time of flight - ${ }^{4}$ simplify using double angle formula	Method 1 -1 $v=u+a t \Rightarrow 0=v \sin \theta-g t$ $\bullet^{2} t=\frac{v \sin \theta}{g} \Rightarrow 2 t=\frac{2 v \sin \theta}{g}$ -3 $R=v \cos \theta \times 2 t=\frac{v \cos \theta \times 2 v \sin \theta}{g}$ - ${ }^{4} R=\frac{v^{2} \times 2 \sin \theta \cos \theta}{g}=\frac{v^{2} \sin 2 \theta}{g}$	4
Notes:				
Commonly Observed Responses:				
	(a)	Method 2 -1 ${ }^{1}$ state horizontal range of flight and use it to give expression for t - ${ }^{2}$ use appropriate formula with substitution - ${ }^{3}$ solve the equation for t - ${ }^{4}$ substitute for t to give required formula	Method 2 - ${ }^{1} R=v \cos \theta \times t$ - $s=u t+\frac{1}{2} a t^{2}$ $0=v \sin \theta \times t-\frac{1}{2} g t^{2}$ - $0=t\left(v \sin \theta-\frac{1}{2} g t\right)$ $[t=0] \text { or } t=\frac{2 v \sin \theta}{g}$ - ${ }^{4} R=\frac{v \cos \theta \times 2 v \sin \theta}{g}=\frac{v^{2} \sin 2 \theta}{g}$	4
Notes: ${ }^{3}$ Do not penalise omission of $t=0$				
Commonly Observed Responses:				

	est	Generic scheme	Illustrative scheme	Max mark
9.	(a)	Method 3 - ${ }^{1}$ consider horizontal and vertical motion -2 set up equation for vertical motion at start and finish - ${ }^{3}$ solve the equation for t - ${ }^{4}$ substitute for end value for t to give range formula	Method 3 $\begin{aligned} & \quad \ddot{x}=0 \Rightarrow \dot{x}=v \cos \theta \Rightarrow x=v t \cos \theta \\ & \bullet \quad \dddot{y}=-g \Rightarrow \dot{y}=-g t+v \sin \theta \\ & \Rightarrow y=-\frac{1}{2} g t^{2}+v t \sin \theta \\ & \bullet^{2} \quad y=-\frac{1}{2} g t^{2}+v t \sin \theta=0 \\ & 0=t\left(v \sin \theta-\frac{1}{2} g t\right) \\ & \bullet^{3} \\ & {[t=0] \text { or } t=\frac{2 v \sin \theta}{g}} \\ & \bullet^{4} \quad x=v \cos \theta \times t=\frac{v \cos \theta \times 2 v \sin \theta}{g} \\ & =\frac{v^{2} \sin 2 \theta}{g} \end{aligned}$	4
Notes: ${ }^{3}$ Do not penalise omission of $t=0$				
Commonly Observed Responses:				

Question			Generic scheme	Illustrative scheme	Max mark
9.	(b)	(i)	$\cdot{ }^{5}$ substitute both angles into range formula - ${ }^{6}$ by substituting for R set up equation in v ${ }^{7}$ re-arrange and solve for v	$\begin{gathered} .5 R=\frac{v^{2} \sin 60^{\circ}}{g} \quad R+5=\frac{v^{2} \sin 70^{\circ}}{g} \\ .6 \frac{v^{2} \sin 60^{\circ}}{g}+5=\frac{v^{2} \sin 70^{\circ}}{g} \\ .7 \\ \frac{v^{2}\left(\sin 70^{\circ}-\sin 60^{\circ}\right)}{g}=5 \\ v^{2}=\frac{5 g}{\sin 70^{\circ}-\sin 60^{\circ}}[665 \cdot 2] \\ v=25 \cdot 8 \mathrm{~ms}^{-1} \end{gathered}$	3

Notes:

Commonly Observed Responses:

\bullet^{7} not available where calculator set in radians

Notes:

1. \bullet^{8} can be implied in further working and does not have to be explicitly stated
2. ${ }^{10}$ accept 85 m or 84.9 m (exact values used throughout)

Commonly Observed Responses:

Quest		Generic scheme	Illustrative scheme	Max mark
Alternative solution 1				
(b)	(ii)	$\bullet 8$ substitute original velocity into range formula for $\theta=35^{\circ}$ - ${ }^{9}$ calculate time of flight ${ }^{10}$ add on extra distance for wind assistance	- $R=\frac{25.8^{2} \times \sin 70^{\circ}}{9.8}=63.8 \mathrm{~m}$ - ${ }^{9}$ $t=\frac{2 v \sin \theta}{g}=\frac{2 \times 25.8 \times \sin 35}{9.8}=0.302$ ${ }^{-10} R=63 \cdot 8+7 \times 0 \cdot 302=84 \cdot 9 \mathrm{~m}$	3
Notes:				
Commonly Observed Responses:				
Alternative solution 2				
	(ii)	- find new horizontal component - ${ }^{9}$ calculate time of flight - ${ }^{10}$ calculate range	$\begin{aligned} & \ddot{x}=0 \Rightarrow \dot{x}=v \cos \theta+7 \\ & \Rightarrow x=v t \cos \theta+7 t=21 \cdot 13 \end{aligned}$ - ${ }^{9}$ $t=\frac{2 v \sin \theta}{g}=\frac{2 \times 25.8 \times \sin 35}{9.8}=0.302$ $\cdot{ }^{10} R=21 \cdot 13 \times 3.02+7 \times 3.02=85 \cdot 0 \mathrm{~m}$	3
Notes:				
Commonly Observed Responses:				

Question			Generic scheme	Illustrative scheme	Max mark
Alternative solution 3					
9.	(b)	(ii)	- calculate resultant velocity - calculate angle ${ }^{10}$ calculate range using formula	C $\begin{aligned} & a^{2}=b^{2}+c^{2}-2 b c \cos A \\ & =25 \cdot 8^{2}+7^{2}-2(25 \cdot 8)(7) \cos 145^{\circ} \\ & =1010 \cdot 5 \\ & a=31 \cdot 8 \mathrm{~ms}^{-1} \end{aligned}$ - $\frac{\sin 145^{\circ}}{31 \cdot 8}=\frac{\sin C}{7} \Rightarrow C=\sin ^{-1}(0 \cdot 126)=7 \cdot 25$ $\theta=35^{\circ}-7 \cdot 25^{\circ}=27 \cdot 7^{\circ}$ ${ }^{10} R=\frac{v^{2} \sin 2 \theta}{g}=\frac{31 \cdot 8^{2} \sin (2 \times 27 \cdot 7)}{9.8}=85 \cdot 0 \mathrm{~m}$	3
Notes:					
Commonly Observed Responses:					

Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)	Method1: Relative to A - ${ }^{1}$ derive expressions for the mass and centres of mass of the original lamina and the circular hole -2 derive expressions for the mass and centres of mass of the semi-circular hole -3 take moments horizontally by equating with centre of mass of remaining shape - ${ }^{4}$ solve this equation to find horizontal value of centre of mass -5 take moments vertically -6 solve this equation to find vertical value of centre of mass	- Original Lamina: $16 \pi m(4,0)$ Circular hole: $\pi m(2,1)$ - 2 Semi-circular hole: $2 \pi m\left(6, \frac{8}{3 \pi}\right) \quad[6,0 \cdot 849]$ - ${ }^{3}$ $13 \pi m \bar{x}=16 \pi m \times 4-\pi m \times 2-2 \pi m \times 6$ - ${ }^{4} \bar{x}=\frac{50}{13} \quad[3.846]$ $\cdot{ }^{5} 13 \pi m \bar{y}=16 \pi m(0)-\pi m \times 1-2 \pi m \times \frac{8}{3 \pi}$ $.{ }^{6} \bar{y}=-0.208$	6
Notes: 1. ${ }^{6}$ Position does not have to be specified as coordinates as moments were taken from A 2. Do not penalise omission of mass				

Question		Generic scheme			Illustrative scheme		Max mark
10.	(a)	Method 2: Relative to C - ${ }^{1}$ derive expressions for the mass and centres of mass of the original lamina and the circular hole -2 derive expressions for the mass and centres of mass of the semi-circular hole - take moments horizontally by equating with centre of mass of remaining shape - ${ }^{4}$ solve this equation to find horizontal value of centre of mass - 5 take moments vertically -6 solve this equation to find vertical value of centre of mass And state coordinates relative to A			ginal Lamina: 1 cular hole: πm mi-circular hole $\tau m\left(6, \frac{8}{3 \pi}\right)$ $\begin{aligned} & n \bar{x}=16 \pi m \times 0-\pi \\ & =\frac{-2}{13}[-0 \cdot 154] \\ & \pi m \bar{y}=16 \pi m(0)-1 \\ & =-0.208 \\ & .846,-0 \cdot 208) \end{aligned}$	$(4,0)$ 49] $-2-2 \pi m \times 2$ $1-2 \pi m \times \frac{8}{3 \pi}$	6
Notes:							
Commonly Observed Responses: -1 • ${ }^{2}$ Alternative presentation of data							
			$\begin{gathered} \text { Original } \\ \pi m\left(4^{2}\right)=16 \pi m \end{gathered}$	Small Circle $\pi m\left(4^{2}\right)=16 \pi m$	$\begin{aligned} & \text { Semicircle } \\ & \frac{1}{2} \pi m\left(2^{2}\right)=2 \pi \end{aligned}$	Remaining $13 \pi m$	
	Mome	m A: \bar{x}	$\binom{4}{0}$	$\binom{2}{1}$	$\binom{6}{\frac{8}{3 \pi}}$	$\binom{\bar{x}}{\bar{y}}$	
	Mome	com \bar{y}	$\binom{0}{0}$	$\binom{-2}{1}$	$\left(\begin{array}{c}2 \\ 8 \\ 3 \pi\end{array}\right)$	$\binom{\bar{x}}{\bar{y}}$	
	(b)	${ }^{7}$ inter	et rotation		$\theta=\frac{0.208}{3.846} \quad \theta=$		1
Notes:							
Commonly Observed Responses:							

Question			Generic scheme	Illustrative scheme	Max mark
11.	(a)		- ${ }^{1}$ calculate the displacement of A and B in 6 minutes -2 calculate velocity of A and B	$\begin{aligned} \bullet & \begin{array}{l} \mathbf{r}_{A}=4 \cdot 8 \mathbf{i}+\mathbf{1} \cdot 4 \mathbf{j} \\ \mathbf{r}_{B} \end{array}=-0 \cdot 8 \mathbf{i}+1 \cdot 5 \mathbf{j} \\ \bullet & \mathbf{v}_{A}=\frac{4 \cdot 8}{0 \cdot 1} \mathbf{i}+\frac{1 \cdot 4}{0 \cdot 1} \mathbf{j}=48 \mathbf{i}+14 \mathbf{j} \\ \bullet & \mathbf{v}_{B}=\frac{-0 \cdot 8}{0 \cdot 1} \mathbf{i}+\frac{1 \cdot 5}{0 \cdot 1} \mathbf{j}=-8 \mathbf{i}+15 \mathbf{j} \end{aligned}$	2
	(b)	(i)	- ${ }^{3}$ express displacement of A and B as functions of time - ${ }^{4}$ equate i-components - ${ }^{5}$ equate \mathbf{j}-components and form conclusion	$\cdot{ }^{3}$ $\begin{aligned} \mathbf{r}_{A} & =(1 \cdot 2+48 t) \mathbf{i}+(1 \cdot 6+14 t) \mathbf{j} \\ \mathbf{r}_{B} & =(34 \cdot 8-8 t) \mathbf{i}+(1+15 t) \mathbf{j} \end{aligned}$ - $4 \cdot 1 \cdot 2+48 t=34 \cdot 8-8 t$ i components equal when $t=0.6$ hours - $5 \quad 16+14 t=1+15 t$ $t=0.6$ hours \mathbf{i} and \mathbf{j} components are equal at $t=0.6$ so boats collide	3
Notes: 1. Horizontal marking can apply at \bullet^{4} and \bullet^{5}.					
Commonly Observed Responses:					
		(ii)	\bullet find the position of collision	- 6 ($\left.\begin{array}{l}30 \\ 10\end{array}\right)$ or $(30,10)$	1
Notes:					
Commonly Observed Responses:					

Question		Generic scheme	Illustrative scheme	Max mark
Alternative Solution (relative position vector)				
(b)	(i)	- ${ }^{3}$ express displacement of A and B as functions of time - 4 find relative position vector and set vector or either component to zero $\cdot{ }^{5}$ find time of collision and form conclusion	- $\quad \mathbf{r}_{A}=\binom{48 t+1 \cdot 2}{14 t+1 \cdot 6}, \mathbf{r}_{B}=\binom{-8 t+34 \cdot 8}{15 t+1}$ ${ }_{A} \mathbf{r}_{B}=\binom{56 t-33.6}{-t+0.6}=\binom{0}{0}$ or $56 t-33 \cdot 6=0$ or $-t+0 \cdot 6=0$. $5-t+0.6=0 \Rightarrow t=0.6$ $56 t-33 \cdot 6=0 \Rightarrow t=0.6$ \mathbf{i} and \mathbf{j} components are equal at $t=0.6$ so boats collide	3
	(ii)	$\bullet 6$ find the position of collision	.6 $\binom{30}{10}$ or $(30,10)$	1
Notes:				
Commonly Observed Responses:				
Alternative solution (parallel vectors)				
(b)	(i)	- ${ }^{3}$ expression to indicate method of bringing B to rest with substitution - ${ }^{4}$ expression for $A_{1} B_{1}$ - ${ }^{5} A$ and B will collide if v_{A-B} is parallel to $A_{1} B_{1}$	$\begin{aligned} & v_{A-B}=v_{A}-v_{B} \\ & \bullet^{3} \quad=\binom{48}{14}-\binom{-8}{15}=\binom{56}{-1} \\ & \bullet \bullet_{1} \quad \\ & A_{1} B_{1}=\binom{34 \cdot 8}{1}-\binom{1 \cdot 2}{1 \cdot 6}=\binom{33 \cdot 6}{-0.6} \\ & \cdot{ }^{5} \\ & \frac{3}{5}\binom{56}{-1}=\binom{33 \cdot 6}{-0.6} \text { or } A_{1} B_{1}=0.6 v_{A-B} \end{aligned}$ So boats collide	3
	(ii)	${ }^{6}$ use $t=0.6$ to find the position of collision and state as coordinate	.6 $\binom{30}{10}$ or $(30,10)$	1
Notes: Commonly Observed Responses:				

Question		Generic scheme	Illustrative scheme	Max mark
12.	(a)	-1 use Newton's second law parallel to wire -2 resolve perpendicular to the cable and combine equations and simplify expression for acceleration - ${ }^{3}$ use appropriate equation of motion with some substitution - ${ }^{4}$ substitute all values and calculate speed	- ${ }^{1} m g \sin \theta-\mu R=m a$ - ${ }^{2} \quad R=m g \cos \theta$ $a=g(\sin \theta-\mu \cos \theta) \quad[0.589]$ $\bullet^{3} v^{2}=u^{2}+2(g(\sin \theta-\mu \cos \theta)) s$ $\begin{aligned} & v^{2}=2^{2}+2\left(g\left(\sin 20^{\circ}-0 \cdot 3 \cos 20^{\circ}\right)\right) \\ & v=5 \cdot 25 \mathrm{~ms}^{-1} \end{aligned}$	4 $\times 20$
Notes:				
Commonly Observed Responses:				
Alternative solution (work/energy principle)				
	(a)	-1 calculate height and find expression for energy at top - ${ }^{2}$ find expression for energy at bottom and calculate change in energy - ${ }^{3}$ calculate work done against friction and use work/energy principle - ${ }^{4}$ substitute and solve to find speed	$h=20 \sin 20^{\circ}(\approx 6.84)$ and $m g \times 20 \sin 20^{\circ}+\frac{1}{2} m \times 2^{2}$ $\bullet^{2} \quad 20 m g \sin 20^{\circ}+2 m-\frac{1}{2} m v^{2}$ $\begin{aligned} W & =0 \cdot 3 m g \cos 20^{\circ} \times 20 \\ \bullet^{3} & =20 m g \sin 20^{\circ}+2 m-\frac{1}{2} m v^{2} \end{aligned}$ $6 m g \cos 20^{\circ}$ $\begin{gathered} \bullet^{4}=20 m g \sin 20^{\circ}+2 m-\frac{1}{2} m v^{2} \\ v=5 \cdot 25 \mathrm{~ms}^{-1} \end{gathered}$	4
Notes:				

Question		Generic scheme	Illustrative scheme	Max mark
12.	(b)	- 5 find total initial energy -6 find total final energy -7 use conservation of energy to form equation - 8 substitute values and calculate angle	${ }^{5}{ }^{5}$ setting zero $P E$ level at seat $E_{K}+E_{P}=\frac{1}{2} m u^{2}+0=13 \cdot 8 m$ - $E_{K}+E_{P}=0+m g(r-r \cos \theta)$ - ${ }^{7} 13 \cdot 8 m=m g r(1-\cos \theta)$ ${ }^{8} \quad \cos \theta=1-\frac{5 \cdot 25^{2}}{2 \times 9.8 \times 1.8}$ $\theta=77.4^{\circ}$	4
Notes:				
Commonly Observed Responses:				
Alternative solution (work/energy principle)				
	(b)	- 1 use conservation of energy -2 substitute to find height - ${ }^{3}$ find vertical distance below centre of rotation - calculate angle	- $\frac{1}{2} m v^{2}=m g h$ - $\quad h=\frac{5 \cdot 25^{2}}{2 \times 9.8}=1.406$ $\bullet^{3} \quad 1.8-1.406=0.394$ $\cdot^{4} \cos ^{-1}\left(\frac{0.394}{1.8}\right)=77 \cdot 4^{\circ}$	4
Notes:				
Commonly Observed Responses:				

	Question	Generic scheme	Illustrative scheme	Max mark
Alternative solution (SHM)				
14.		- ${ }^{1}$ calculate speed at point cord becomes tense -2 calculate equilibrium extension - ${ }^{3}$ use Newton's second law to set up equation and calculate ω -4 calculate amplitude of motion - ${ }^{5}$ calculate height above water		5
Notes:				
Commonly Observed Responses:				

	Question	Generic scheme	Illustrative scheme	Max mark
Alternative solution (Newton's Second Law and splitting the variables)				
14.		- ${ }^{1}$ apply Newton's Second Law and Hooke's Law - 2 separate variables and integrate - calculate speed at point cord becomes tense and substitute to find constant of integration - 4 substitute $v=0$ and solve quadratic - 5 select solution and calculate height above water		5
Notes:				
Commonly Observed Responses:				

Question		Generic scheme	Illustrative scheme	Max mark
15.	(a)	- ${ }^{1}$ set up auxiliary equation - 2 solve quadratic equation to give general solution - ${ }^{3}$ initial condition $x=1.5$ when $t=0$ - ${ }^{4}$ differentiate to use initial condition ${ }^{5}$ substitution to obtain B and particular solution	$\bullet^{1} m^{2}+0.4 m+0.04=0$ $\begin{aligned} \bullet{ }^{2} & (m+0.2)(m+0.2)=0 \Rightarrow m= \\ & -0.2 \text { repeated } x=A e^{-0.2 t}+B t e^{-0.2 t} \end{aligned}$ $\bullet^{3} A=1.5$ $\frac{d x}{d t}=-0 \cdot 2 A e^{-0.2 t}+B e^{-0.2 t}-0 \cdot 2 B t e^{-0.2 t}$ - ${ }^{5}-0 \cdot 5=-0.3+B$ $B=-0.2$ Hence $x=1.5 e^{-0.2 t}-0.2 t e^{-0.2 t}$	5
Notes: 1. \bullet^{1} only available for correct quadratic expression equated to zero. 2. \bullet^{2} only available if the general solution is expressed in terms of t				
Commonly Observed Responses: $\bullet^{2} x=A e^{-0.2 t}+B e^{-0.2 t}$, leading to $A+B=1.5$ only \bullet^{1} and \bullet^{3} are available. - $5 \frac{d x}{d t}=+0.5$ leading to $B=0.8$				
	(b)	- ${ }^{6}$ substitute $t=2$ into expression for x and calculate distance moved.	$\begin{aligned} & \bullet 6 \\ & x=1.5 e^{-0.4}-0.4 e^{-0.4} \\ & x=0.737 \end{aligned}$ distance moved $1.5-0.737=0.763$	1
Notes:				

Question			Generic scheme	Illustrative scheme	Max mark
16.	(a)	(i)	-1 ${ }^{1}$ sketch graph showing speed increase/decrease of both runners and annotation of meeting after 3 seconds \bullet^{2} sketch complete with relevant annotation		2
		(ii)	-3 use equations of motion under constant acceleration to find time for deceleration of P	$\begin{aligned} & s=t=u=12 \quad v=9 \quad a=4 \\ & v=u+a t \\ & 9=12-4 t \\ & t=0.75 \mathrm{~s} \end{aligned}$	1
Notes: 1. Must show v / t graph beyond $\mathrm{t}=3$ and a maximum speed for Q of $12 \mathrm{~ms}^{-1}$ 2. Graph Q .. allow variations after $\mathrm{t}=3 \mathrm{~s}$ but maximum speed must not exceed 12 acceleration is not specified. Commonly Observed Responses:					
16.	(b)		-4 expression for area under the graph for P - ${ }^{5}$ correct displacement -6 find displacement for Q in three seconds -7 explain displacements - calculate distance	- ${ }^{4} \quad P: 27+\frac{1}{2}(2 \cdot 25+3) \times 3$ - 534.875 metres - $6 \frac{1}{2} \times 3 \times 9=13.5$ metres - $834 \cdot 875+0 \cdot 8-13 \cdot 5=22 \cdot 175 m$	5
Notes:					
Commonly Observed Responses:					

Notes:

1. Use of $c=\frac{m^{2}}{I}$ may appear in \bullet^{4}

Commonly Observed Responses:

