

### **Advanced Higher**



### **Advanced Higher – Section A**

#### Advanced Higher Applied 2003: Section A Solutions and marks

A1. P(Taxi Yellow | Witness states Yellow)  

$$= \frac{P(Taxi Yellow \cap Witness states Yellow)}{P(Witness states Yellow)} MI$$

$$= \frac{P(Witness states Yellow)}{P(WY | TY), P(TY) + P(WY | TG), P(TG)} MI$$

$$= \frac{0.8 \times 0.15}{0.8 \times 0.15 + 0.2 \times 0.85} 1, 1$$

$$= \frac{0.12}{0.29} = 0.41 1$$
Alternative  

$$\int_{0.15}^{0.8 \times 0.15} \int_{0.2}^{0.68} \int_{0.2}^{0.68} \int_{0.17}^{0.17 + 0.12} \int_{11}^{0.12} \int_{11}^{$$

| A4. | $X \sim Bin(100, 0.75)$                                    | 1 |
|-----|------------------------------------------------------------|---|
|     | $\Rightarrow$ X is approximately N                         | 1 |
|     | and $N(75, 4.33^2)$                                        | 1 |
|     | $P(X \le 70) = P\left(Z \le \frac{70.5 - 75}{4.33}\right)$ | 1 |
|     | $= P(Z \leq -1.04)$                                        | 1 |
|     | = 0.1492                                                   | 1 |
|     |                                                            |   |

| A5. | (a) | $t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}} = \frac{-0.655}{\sqrt{\frac{1-(-0.655)^2}{59}}}$ |   |
|-----|-----|------------------------------------------------------------------------------------------|---|
|     |     | = -6.66.                                                                                 | 1 |
|     |     | The critical region for t at the 5% level of significance with 59 d.f.                   | 1 |
|     |     | will be approx. $ t  > 1.96$ .                                                           | 1 |
|     |     | Since $-6.66$ lies in the critical region $H_0$ would be rejected                        | 1 |
|     | (b) | there is evidence of a linear relationship between x and y                               | 1 |

| P(X < 10 + a) = F(9 + a) where $F(.)$ is the Poi(1) distribution function.<br>P(10 - a < X < 10 + a) = F(9 + a) - F(10 - a) | 1<br>1                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| We require $F(9 + a) - F(10 - a) \ge 0.99$                                                                                  |                                                                                                                                                                                                          |
| a = 7 gives $F(16) - F(3) = 0.9626$                                                                                         |                                                                                                                                                                                                          |
| a = 8 gives $F(17) - F(2) = 0.9830$                                                                                         | <b>M1</b>                                                                                                                                                                                                |
| a = 9 gives $F(18) - F(1) = 0.9923$                                                                                         |                                                                                                                                                                                                          |
| Smallest integer is $a = 9$ . [Method has to be clear.]                                                                     | 1                                                                                                                                                                                                        |
|                                                                                                                             | P(10 - a < X < 10 + a) = F(9 + a) - F(10 - a)<br>We require $F(9 + a) - F(10 - a) \ge 0.99$<br>a = 7 gives $F(16) - F(3) = 0.9626a = 8$ gives $F(17) - F(2) = 0.9830a = 9$ gives $F(18) - F(1) = 0.9923$ |

| <b>A7.</b> (a) | $H_0: \mu_D = 0$<br>$H_1: \mu_D > 0$<br>$t = \frac{\overline{d} - \mu_D}{s} = \frac{3.83 - 0}{54}$<br>[Must infer differences]                                                                     | 1           |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                | $\frac{3D}{\sqrt{n}} = \frac{3.41}{\sqrt{12}}$<br>= 2.45<br>The critical region at the 5% significance level with 11 df is $t > 1.796$ .                                                           | 1<br>1      |
| (b)            | Thus the null hypothesis would be rejected<br>at the 5% level of significance<br>so the data do provide evidence that the training course has been effective.<br>A sign test could have been used. | 1<br>1<br>1 |

| <b>A8.</b> | (a) | Assume that the journey time is normally distributed (with $\sigma = 3$ ).<br>$H_0$ : $\mu = 28$                        | 1 |
|------------|-----|-------------------------------------------------------------------------------------------------------------------------|---|
|            |     | $H_1: \mu \neq 28$ [Must be two-tailed]                                                                                 | 1 |
|            |     | $z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{25.125 - 28}{\frac{3}{\sqrt{8}}}$                            |   |
|            |     | = -2.71                                                                                                                 | 1 |
|            |     | The critical region is $z < -2.58$ or $z > 2.58$ .                                                                      | 1 |
|            |     | Since $-2.71 < -2.58$ the null hypothesis would be rejected                                                             | 1 |
|            |     | at the 1% level of significance i.e. there is evidence of a change.                                                     | 1 |
|            | (b) | $p-value = 2 \times \Phi(-2.71)$                                                                                        | 1 |
|            |     | = 2(1 - 0.9966) = 0.0068                                                                                                | 1 |
|            |     | The fact that the p-value is less than 0.01 confirms rejection of the null                                              |   |
|            |     | hypothesis at the 1% level of significance                                                                              | 1 |
|            | (c) | The fact that 28 does not lie in the 99% confidence interval confirms rejection of the null hypothesis at the 1% level. | 1 |

#### **A9.** (a) p = 78/100 = 0.78. A 95% C.I. for the proportion of ischaemic strokes in the population is

$$0.78 \pm 1.96 \sqrt{\frac{0.78 \times 0.22}{100}}$$
 1

$$0.78 \pm 0.08$$
 1

1

1

(b) The interval does not include 0.65 which means that there is evidence of differing proportions.

(c)

| Observed |       |      |          | Expected |       |       |          |     |     |
|----------|-------|------|----------|----------|-------|-------|----------|-----|-----|
|          |       | Died | Survived |          |       | Died  | Survived |     |     |
|          | Isch. | 37   | 41       | 78       | Isch. | 40.56 | 37.44    | 78  | 1,1 |
|          | Haem. | 15   | 7        | 22       | Haem. | 11.44 | 10.56    | 22  |     |
|          |       | 52   | 48       | 100      |       | 52    | 48       | 100 |     |

 $H_0$ : Survival is independent of the type of stroke.

 $H_1$  : Survival is dependent of the type of stroke.1 $X^2 = \sum \frac{(O - E)^2}{E}$ 1 $x^2 = 0.312 + 0.339 + 1.108 + 1.200$ 1= 2.959.1Since  $\chi^2_{5\%,1 \text{ df}} = 3.841 > 2.959$ 1 $H_0$  is accepted at the 5% level1i.e. there is no evidence that survival depends on the type of stroke.1

| A10. | (a) | Since all the sample means plot within the chart limits there is no evidence of special cause variation.<br>$\mu = 5018.86$ | 1<br>1 |
|------|-----|-----------------------------------------------------------------------------------------------------------------------------|--------|
|      |     | Limits are given by $\mu \pm 3 \frac{\sigma}{\sqrt{n}}$                                                                     | 1      |
|      |     | $5018.86 \pm 3\frac{288.3}{\sqrt{5}}$ [= 5018.86 ± 386.79 ~ 4632.1, 5405.6 as on chart].                                    | 1      |
|      | (b) | P(4500 < Volume < 5500)                                                                                                     | 1      |
|      |     | $= \Phi\left(\frac{5500 - 5018.86}{288.3}\right) - \Phi\left(\frac{4500 - 5018.86}{288.3}\right)$                           | 1      |
|      |     | $= \Phi(1.67) - \Phi(-1.80)$                                                                                                | 1      |
|      |     | = 0.9176                                                                                                                    | 1      |
|      | (c) | Adjust process so that mean becomes 5000.<br>Reduce the variability in the process.                                         | 1<br>1 |

#### [END OF MARKING INSTRUCTIONS]



# 2003 Applied Mathematics Advanced Higher – Section B

#### Advanced Higher Applied 2003: Section B Solutions and marks

**B1.** 
$$f(x) = \sqrt{9 - 4x}, \quad f'(x) = \frac{-2}{(9 - 4x)^{1/2}} \quad f''(x) = \frac{-4}{(9 - 4x)^{3/2}} \quad f'''(x) = \frac{-24}{(9 - 4x)^{5/2}}$$
  
Taylor polynomial is  
 $p(2 + h) = 1 - 2h - \frac{4h^2}{2} - \frac{24h^3}{6}$   
 $= 1 - 2h - 2h^2 - 4h^3.$  3

Second degree approximation is p(2 + 0.03) = 1 - 0.06 - 0.0018 = 0.9382 2

Principal truncation error term is  $-4 \times 0.03^3 = -0.0001$ . Hence second order estimate cannot be guaranteed accurate to 4 decimal places. 2

B2. 
$$L(x) = \frac{(x - 0.2)(x - 0.5)}{(-0.2)(-0.5)} 1.306 + \frac{(x - 0.0)(x - 0.5)}{(0.2)(-0.3)} 1.102 + \frac{(x - 0.0)(x - 0.2)}{(0.5)(0.3)} 0.741$$
$$= (x^2 - 0.7x + 0.1) 13.06 - (x^2 - 0.5x) 18.367 + (x^2 - 0.2x) 4.490$$
$$= -0.367x^2 - 0.947x + 1.306$$

| <b>B3.</b> | The first relation is linear since there is no term in $a_r$ of more than first degree. | 1 |
|------------|-----------------------------------------------------------------------------------------|---|
|            | Relation (i) is a second order relation. Its fixed point <i>a</i> is found from         |   |
|            | 2a = 3a - 4a + 9, i.e. $a = 3$ .                                                        | 2 |
|            | Sequence from (ii) is $a_0 = 1$ ; $a_1 = 1$ ; $a_2 = \frac{1}{2}$ ; $a_3 = -3/8$ .      | 2 |

**B4.** Let quadratic through  $(x_0, f_0)$ ,  $(x_1, f_1)$ ,  $(x_2, f_2)$  be  $y = A_0 + A_1 (x - x_0) + A_2 (x - x_0) (x - x_1)$ . Then  $f_0 = A_0$ ;  $f_1 = A_0 + A_1h$ ;  $f_2 = A_0 + 2A_1h + 2A_2h^2$ and so

$$A_1 = \frac{f_1 - f_0}{h} = \frac{\Delta f_0}{h}; \qquad A_2 = \frac{f_2 - 2f_1 + f_0}{2h^2} = \frac{\Delta^2 f_0}{2h^2};$$

Thus

$$y = f_0 + \frac{x - x_0}{h} \Delta f_0 + \frac{(x - x_0)(x - x_1)}{2h^2} \Delta^2 f_0.$$

Setting  $x = x_0 + ph$  gives

$$y = f_0 + p\Delta f_0 + \frac{1}{2}p(p-1)\Delta^2 f_0.$$
 5

(Can also be done by an operator expansion of  $(1 + \Delta)^p$ .)

**B5.** (a) Maximum error is  $8\varepsilon$ , i.e.  $8 \times 0.0005 = 0.004$ . (b)  $\Delta^2 f_3 = 0.167$ . (c) Third degree polynomial would probably not be particularly good as an approximation as differences are not constant. (d) Working from x = 2.0, p = 0.9. (0.9) (-0.1)

$$f(2.18) = 2.318 + 0.9(0.197) + \frac{(0.9)(-0.1)}{2}(0.086)$$
  
= 2.318 + 0.177 - 0.004 = 2.491 2

| <b>B6.</b> Gauss-Seidel table is | <b>B6.</b> | Gauss-Seidel table is: |
|----------------------------------|------------|------------------------|
|----------------------------------|------------|------------------------|

| D0.        | Uauss-Seluel la                                                                                                                        | idic 15.                                                                          |                                                          |                                                         |                |                                                    |        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------|----------------------------------------------------|--------|
|            | $x_1$                                                                                                                                  | $x_2$                                                                             | <i>x</i> <sub>3</sub>                                    |                                                         |                |                                                    |        |
|            | 0                                                                                                                                      | 0                                                                                 | 0                                                        |                                                         |                |                                                    |        |
|            | 1.625                                                                                                                                  | -3.642                                                                            | -0.34                                                    |                                                         |                |                                                    |        |
|            | 2.014                                                                                                                                  | -3.616                                                                            | -0.34                                                    |                                                         |                |                                                    |        |
|            | 2.011                                                                                                                                  | -3.616                                                                            | -0.34                                                    | 7                                                       |                |                                                    |        |
|            | Hence, to 2 dec                                                                                                                        | cimal places, x                                                                   | $t_1 = 2.01$                                             | ; $x_2 = -3.62;$                                        | $x_3 = -0$     | )·35.                                              | 5      |
| B7.        | For $g(x) = (1)$<br>In $I_2 = [1.22, 1]$<br>In $I_1 = [0.0, 0]$                                                                        | 1.3], g'(x) >                                                                     | 1, so clea                                               | rly unsuitable.                                         |                |                                                    | 2      |
|            | Simple Iteration so that root is 0                                                                                                     | -                                                                                 | -                                                        | _                                                       | 0.33471,       | $x_3 = 0.33473$                                    | 2      |
|            | For bisection, $f(1\cdot 2) = -0\cdot 112;$ $f(1\cdot 3) = 0\cdot 813$<br>$f(1\cdot 25) = 0\cdot 302$<br>$f(1\cdot 225) = 0\cdot 084;$ |                                                                                   |                                                          |                                                         |                |                                                    |        |
|            | Hence root lies                                                                                                                        | f(1.2125) =<br>in [1.2125, 1.                                                     |                                                          |                                                         |                |                                                    | 3      |
| <b>B8.</b> | (a) Simpson's r                                                                                                                        |                                                                                   |                                                          |                                                         |                |                                                    |        |
| 201        | x                                                                                                                                      | f(x)                                                                              | $m_1$                                                    | $m_1 f(x)$                                              | $m_2$          | $m_2 f(x)$                                         |        |
|            | л<br>0                                                                                                                                 | 0.0                                                                               | 1                                                        | 0.0                                                     | 1              | 0.0                                                |        |
|            | 0.25                                                                                                                                   | 0.04868                                                                           | 1                                                        | 00                                                      | 4              | 0.19472                                            |        |
|            | 0.25                                                                                                                                   | 0·15163                                                                           | 4                                                        | 0.60653                                                 | 2              | 0.30326                                            |        |
|            | 0.75                                                                                                                                   | 0.26571                                                                           | ·                                                        | 0 00000                                                 | 4              | 1.06284                                            |        |
|            | 1                                                                                                                                      | 0.36788                                                                           | 1                                                        | 0.36788                                                 | 1              | 0.36788                                            |        |
|            |                                                                                                                                        |                                                                                   |                                                          | 0.97441                                                 | -              | 1.92870                                            |        |
|            | Hence $I_{a}$ –                                                                                                                        | • 0·97441 × (                                                                     | ).5/3 -                                                  | 0.16240                                                 |                |                                                    |        |
|            |                                                                                                                                        | $\cdot 92870 \times 0.23$                                                         |                                                          |                                                         |                |                                                    | 4      |
|            | (b) $f^{iv}(0) = 1$                                                                                                                    | $2; f^{iv}(1) = 1$                                                                | ·84.                                                     |                                                         |                |                                                    |        |
|            |                                                                                                                                        | truncation error<br>ble estimate is                                               |                                                          | $ (0.25^4/180) =$<br>161.                               | 0.00026        |                                                    | 2<br>1 |
|            | approximat<br>$I = I_n + C$<br>With $2n$ str<br>$I = I_{2n} + C$                                                                       | ed by Simpson<br>$C(2h)^4 + D(2)^4$<br>ips and step since<br>$Ch^4 + Dh^6 + Dh^6$ | $(h)^{6} +$<br>$(h)^{6} +$<br>$(h)^{6} +$<br>$(h)^{6} +$ | with principal tr<br>$I_n = I_n + 160$<br>have<br>$I_n$ | $Ch^4 + \dots$ | on of an integral<br>error of $O(h^4)$ ) is<br>(1) |        |
|            |                                                                                                                                        |                                                                                   |                                                          | $-I_n + O(h^6)$                                         |                |                                                    | ~      |
|            |                                                                                                                                        |                                                                                   |                                                          | $+ (I_{2n} - I_n)/1$<br>240)/15 = 0.1                   |                |                                                    | 3      |
|            |                                                                                                                                        | o suitable accu                                                                   |                                                          |                                                         |                |                                                    | 1      |
|            |                                                                                                                                        |                                                                                   |                                                          |                                                         |                |                                                    |        |

**B9.** Gaussian elimination table is:

|                                    |       |              |        |             | sum   |
|------------------------------------|-------|--------------|--------|-------------|-------|
|                                    | (4.1) | -5.7         | 1.4    | 4.9         | 4.7   |
|                                    | 1.6   | -2.2         | 0.5    | $2 \cdot 2$ | 2.1   |
|                                    | 0     | (1.5)        | 2.2    | -0.8        | 2.9   |
| $R_2 - 1.6R_1/4.1$                 | 0     | 0.024        | -0.046 | 0.288       | 0.266 |
| $R_4 - 0.024R_3 / 1.5$             | 0     | 0            | -0.081 | 0.301       | 0.220 |
| $x_3 = -3.716$<br>To 1 decimal pla | ace:  | $x_2 = 4.91$ | 17     | $x_1 = 9$   | ·300  |
| $x_1 = 9.3$                        |       | $x_2 = 4.9$  |        | $x_3 = -$   | 3.7   |

Ill-conditioning means that a small change in the element(s) of the input data is likely to cause a large change in the solution of the equations. The fact that the new elements in rows 4 and 5 of the tableau are much smaller than the original elements (or small size of determinant) suggests illconditioning.

**B10.** Euler tables are:

| х                                       | У                                                      | y'                         | x      | у      | y'     |  |  |  |
|-----------------------------------------|--------------------------------------------------------|----------------------------|--------|--------|--------|--|--|--|
| 1                                       | 1                                                      | 0.2679                     | 1      | 1      | 0.2679 |  |  |  |
| 1.1                                     | 1.0268                                                 | 0.2036                     | 1.05   | 1.0134 | 0.2355 |  |  |  |
| 1.2                                     | 1.0472                                                 |                            | 1.1    | 1.0252 | 0.2041 |  |  |  |
|                                         |                                                        |                            | 1.15   | 1.0354 | 0.1737 |  |  |  |
|                                         |                                                        |                            | 1.2    | 1.0441 |        |  |  |  |
| (h =                                    | 0.1)                                                   |                            | (h = 0 | ·05)   |        |  |  |  |
| Hence $y_A(1.2) = 1.0472$ ( $h = 0.1$ ) |                                                        |                            |        |        |        |  |  |  |
|                                         | $y_B(1\cdot 2) = 1$                                    | $\cdot 0441 \ (h = 0.05).$ |        |        |        |  |  |  |
| Truncati                                | Truncation error is linear (first order) in <i>h</i> . |                            |        |        |        |  |  |  |

Let E = magnitude of truncation error in  $y_B(1.2)$ . Then, since error is linear in h,

| $y_A(1\cdot 2) - 2E = y_B(1\cdot 2) - E$                                                                                                   |   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| i.e. $1.0472 - 2E = 1.0441 - E \implies E \approx 0.0031$ (or $0.003$ ).                                                                   |   |  |  |  |
| Hence $y(1\cdot 2) = 1\cdot 0410$ , rounded to suitable accuracy as $1\cdot 04$ .                                                          | 2 |  |  |  |
| Estimate of error is probably too large (maximum truncation error).                                                                        |   |  |  |  |
| Rounding error is not likely to be important as the calculation is performed to 4 decimal places and the answer given to 2 decimal places. | 2 |  |  |  |

#### [END OF MARKING INSTRUCTIONS]

6

3

4

1

011



### **Advanced Higher – Section C**

#### Advanced Higher Applied 2003: Section C Solutions and marks

C1. (a) We are given that 
$$\frac{d^2x}{dt^2} = 12 - 3t^2$$
,  $v(0) = 0$ ,  $s(0) = 0$ 

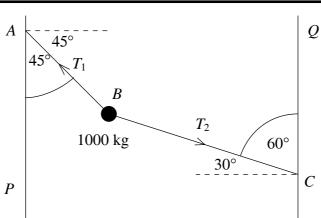
$$\Rightarrow \qquad s(t) = 6t^2 - \frac{1}{4}t^4. \qquad 1$$

When the particle is at rest

|     | when the particle is at rest                                                                                 |   |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
|     | $v(t) = 0 \implies t = 0 \text{ or } t^2 = 12$                                                               |   |  |  |  |  |
|     | $\Rightarrow$ $t = 2\sqrt{3}$ seconds                                                                        | 1 |  |  |  |  |
|     | The distance from the origin at this time is                                                                 |   |  |  |  |  |
|     | $s(2\sqrt{3}) = 12(6 - \frac{1}{4} \times 12) = 36 \text{ m}$                                                | 1 |  |  |  |  |
| (b) | When the particle returns to the origin                                                                      |   |  |  |  |  |
|     | $s(t) = 0 \implies t^2 \left(6 - \frac{1}{4}t^2\right) = 0$                                                  | 1 |  |  |  |  |
|     | $\Rightarrow$ $t^2 = 24 \text{ or } t^2 = 0$                                                                 |   |  |  |  |  |
|     | $\Rightarrow t = 2\sqrt{6} (\text{since } t > 0).$                                                           | 1 |  |  |  |  |
|     | The velocity at this time is                                                                                 |   |  |  |  |  |
|     | $\mathbf{v} = 2\sqrt{6} (12 - 24) \mathbf{i} = -24\sqrt{6} \mathbf{i}  \mathrm{ms}^{-1}$                     | 1 |  |  |  |  |
| (a) | Given $\mathbf{a}_A = -2\mathbf{j}; \mathbf{v}_A(0) = \mathbf{i}; \mathbf{r}_A(0) = -\mathbf{i}$             |   |  |  |  |  |
|     | $\mathbf{v}_A(t) = -2t\mathbf{j} + \mathbf{c} = \mathbf{i} - 2t\mathbf{j}$                                   | 1 |  |  |  |  |
|     | $\Rightarrow \mathbf{r}_A(t) = t\mathbf{i} - t^2\mathbf{j} - \mathbf{i} = (t - 1)\mathbf{i} - t^2\mathbf{j}$ | 1 |  |  |  |  |
| (b) | (i)                                                                                                          |   |  |  |  |  |
|     | ${}_{A}\mathbf{r}_{B} = \mathbf{r}_{A} - \mathbf{r}_{B} = (2 - t)\mathbf{i} - \mathbf{j}$                    | 1 |  |  |  |  |
|     | (ii) The square of the distance between $A$ and $B$ is                                                       |   |  |  |  |  |
|     | $ _{A}\mathbf{r}_{B} ^{2} = (2 - t)^{2} + 1.$                                                                | 1 |  |  |  |  |
|     | This has minimum when $t = 2$ ,                                                                              | 1 |  |  |  |  |
|     | and the minimum distance is 1 metre.                                                                         | 1 |  |  |  |  |
|     | (Alternatively: <b>1</b> for differentiating and getting $t = 2$ and <b>1</b> for min. distance.)            |   |  |  |  |  |
|     | $A = 45^{\circ}$                                                                                             |   |  |  |  |  |
|     | 4.5                                                                                                          |   |  |  |  |  |

**C3**.

C2.



(a) Resolving forces horizontally

$$\frac{T_1}{\sqrt{2}} = \frac{\sqrt{3}}{2} T_2$$
$$T_1 = \frac{\sqrt{3}}{\sqrt{2}} T_2$$
**1**

(b) Resolving vertically

$$T_1 \sin 45^\circ = 1000g + T_2 \sin 30^\circ \qquad 1$$

$$\frac{1}{\sqrt{2}}T_1 - \frac{1}{2}T_2 = 1000g$$
$$\frac{1}{2}(\sqrt{3} - 1)T_2 = 1000g$$

$$T_2 = \frac{2000g}{\sqrt{3} - 1} \approx 26774 \text{ N}$$

C4.

(a) Resolving perpendicular to the chute gives  $R = \frac{1}{\sqrt{2}}mg$  so  $F = \frac{1}{2} \times \frac{1}{\sqrt{2}}mg = \frac{mg}{2\sqrt{2}}$ Over section *AB*, applying Newton II

mg

R

45°

В

С

1

$$\Rightarrow \qquad a = \frac{g}{2\sqrt{2}}.$$

The speed of Jill at *B*,  $v_B$ , is given by  $v_B^2 = 2aL = \frac{gL}{\sqrt{2}} \Rightarrow v_B = \sqrt{\frac{gL}{\sqrt{2}}}$ . **1** 

(b) Over the section *BC*, applying Newton II

Α

$$ma_{BC} = -\frac{1}{2}mg$$
$$a_{BC} = -\frac{1}{2}g.$$
 1

so that at C

$$v_C^2 = \frac{gL}{\sqrt{2}} + 2\left(\frac{-g}{2}\right) \times \frac{L}{2}$$

$$I$$

$$=\frac{gL}{2}(\sqrt{2}-1)$$

$$\Rightarrow \qquad v_C = \sqrt{\frac{gL}{2}(\sqrt{2} - 1)}.$$

**C5.** (a) For  $0 \le t < T$ 

$$mv = \int_0^t F \, dt \qquad 1$$

$$\Rightarrow v = \frac{Ft}{m}.$$
 1

For 
$$t \ge T$$
,  $V = \frac{FT}{m}$  1

[Alternatively:  $v = at \Rightarrow a = \frac{v}{t}$  and  $F = ma \Rightarrow v = \frac{Ft}{m}$ , as *F* is constant.]

(b)

$$W = \int_{0}^{T} F \, ds = \int_{0}^{T} F \, \frac{ds}{dt} \, dt = \int_{0}^{T} F v \, dt \qquad 1$$

$$= \frac{F^2}{m} \int_0^T t \, dt$$

$$=\frac{F^2T^2}{2m}$$

C6. (a) By Newton II

$$m\frac{dv}{dt}\mathbf{i} = -0.05mv\mathbf{i} \quad \mathbf{v}(0) = 2\mathbf{i}$$
  
$$\Rightarrow \quad \frac{dv}{dt} = -0.05v, \quad v(0) = 2. \qquad \mathbf{1}$$

Separating the variables

 $\Rightarrow$ 

$$\int \frac{dv}{v} = -0.05t + c \qquad 1$$

$$\ln |v| = -0.05t + c$$

Since 
$$v(0) = 2, e^{c} = 2$$
 and hence  
 $v(t) = 2e^{-0.05t}$ .  
(b) When  $v = 1, e^{-0.05t} = \frac{1}{2}$ .  
 $\Rightarrow t = 20 \ln 2$   
 $= 13.9$  to 1 decimal place  
1

**C7.** (a)  $\mathbf{V} = V(\cos 30^\circ \mathbf{i} + \sin 30^\circ \mathbf{j}) = \frac{1}{2}V(\sqrt{3}\mathbf{i} + \mathbf{j})$  or for  $V_y$  only. **1** The y-component of the equation of motion gives

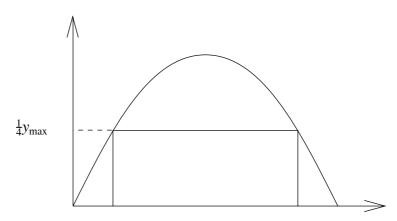
$$\ddot{y} = -g \Rightarrow \dot{y} = \frac{V}{2} - gt$$
 1

$$\Rightarrow y = \frac{Vt}{2} - \frac{1}{2}gt^2 = \frac{t}{2}(V - gt).$$
 1

(b) Note that  $\dot{y} = \frac{1}{2}V - gt$  so the maximum height occurs when  $t = \frac{V}{2g}$ . **1** Hence

$$y_{\max} = \frac{V}{4g} \left( V - \frac{V}{2} \right) = \frac{V^2}{8g}.$$
 1

(c)



We need the times when  $y = \frac{1}{4}y_{\text{max}}$ .

$$\Rightarrow t^2 - \frac{V}{g}t + \frac{V^2}{16g^2} = 0 \qquad 1$$

$$\Rightarrow t = \frac{1}{2} \left[ \frac{V}{g} \pm \left( \frac{V^2}{g^2} - \frac{V^2}{4g^2} \right)^{1/2} \right]$$
 1

$$= \frac{V}{2g} \left[ 1 \pm \frac{\sqrt{3}}{2} \right]$$
 1

The time the missile appears on the radar is

2g

$$\frac{V}{2g}\left[1 + \frac{\sqrt{3}}{2}\right] - \frac{V}{2g}\left[1 - \frac{\sqrt{3}}{2}\right]$$

$$\sqrt{3}V$$
1

**C8.** (a)

$$T = -kx$$

By Newton II

$$m\frac{d^2x}{dt^2} = -kx$$

$$\Rightarrow \quad \frac{d^2x}{dt^2} = \frac{-k}{m}x$$
1

$$= -\omega^2 x$$
, where  $\omega^2 = \frac{k}{m}$  1

$$(x(0) = a, \dot{x}(0) = 0)$$

Noting that  $\frac{d^2x}{dt^2} = v\frac{dv}{dx}$  then

$$v\frac{dv}{dx} = -\omega^2 x$$
 1

$$\Rightarrow \qquad \int v \, dv = -\omega^2 \int x \, dx$$

$$\Rightarrow \quad \frac{1}{2}v^2 = -\frac{1}{2}\omega^2 x^2 + c \qquad 1$$

Since 
$$v = 0$$
 when  $x = a$ , then  $2c = \omega^2 a^2$ , so  
 $v^2 = \omega^2 (a^2 - x^2)$ .

(b) The P.E. in the spring is 
$$E_p = \frac{1}{2}kx^2$$
  
so we have

$$\frac{1}{2}mv^2 = \frac{1}{2}kx^2$$

$$v^{2} = \frac{k}{m} x^{2}$$

$$\Rightarrow \omega^{2} (a^{2} - x^{2}) = \omega^{2} x^{2}$$

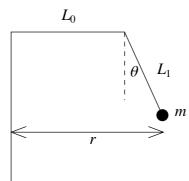
$$\Rightarrow x^{2} = \frac{a^{2}}{2}$$
1

$$\Rightarrow \quad x = \frac{1}{2}$$
$$\Rightarrow \quad x = \pm \frac{a}{\sqrt{2}} \qquad 1$$

Now 
$$x = a \cos \omega t$$
 thus  $\cos \omega t = \pm \frac{1}{\sqrt{2}}$   
so  $\cos \omega t = \frac{1}{\sqrt{2}}$  wt  $= \frac{\pi}{\sqrt{2}}$ 

so 
$$\cos \omega t = \frac{1}{\sqrt{2}} \Rightarrow \omega t = \frac{\pi}{4}$$
  
and  $\cos \omega t = -\frac{1}{\sqrt{2}} \Rightarrow \omega t = \frac{3\pi}{4}$  1

Time taken to travel between 
$$x = \pm \frac{a}{\sqrt{2}}$$
 is  $\frac{\pi}{2\omega}$ .



(a) Note that  $r = L_0 + L_1 \sin \theta$  (\*). Let *T* be the tension in the chain. Resolving vertically

$$T \cos \theta = mg$$
$$T = \frac{mg}{\cos \theta} \qquad (**)$$

Resolving horizontally and using Newton II

$$ma = T \sin \theta$$
  

$$\Rightarrow mr\omega^2 = T \sin \theta \qquad 1$$

$$\Rightarrow \qquad \omega^2 = \frac{mg}{\cos\theta} \times \frac{\sin\theta}{mr} \qquad \qquad 1$$
$$= \frac{g \tan\theta}{r}$$

and from (\*)

$$\omega^2 = \frac{g \tan \theta}{L_0 + L_1 \sin \theta}$$
 1

(b) When  $\theta = 30^{\circ}$ 

$$\omega_1^2 = \frac{\frac{1}{\sqrt{3}}g}{L_0 + 2L_0 \times \frac{1}{2}}$$
 1

$$= \frac{g}{L_0} \times \frac{1}{2\sqrt{3}}$$
 1

When 
$$\theta = 60^{\circ}$$

$$\omega_{2}^{2} = \frac{\sqrt{3} g}{L_{0} + 2L_{0} \times \frac{\sqrt{3}}{2}}$$
$$= \frac{g}{L_{0}} \times \frac{\sqrt{3}}{1 + \sqrt{3}}$$
11

Dividing these equations:

$$\frac{\omega_2^2}{\omega_1^2} = \frac{\sqrt{3}}{1+\sqrt{3}} \times 2\sqrt{3} = \frac{6}{1+\sqrt{3}}$$

$$\Rightarrow \omega_2^2 = \frac{6}{1 + \sqrt{3}} \omega_1^2$$

[END OF MARKING INSTRUCTIONS]

Page 7

**C9.** 

1



### **Advanced Higher – Section D**

Advanced Higher Applied 2003: Section D Solutions and marks  $y = \frac{\cos x}{1 - \sin x}$ **D1**.  $\frac{dy}{dx} = \frac{-\sin x (1 - \sin x) - \cos x (-\cos x)}{(1 - \sin x)^2}$ 1M,1 $= \frac{-\sin x + \sin^2 x + \cos^2 x}{(1 - \sin x)^2}$  $= \frac{1 - \sin x}{(1 - \sin x)^2} = \frac{1}{1 - \sin x}.$ 1 **D2**. **2E1** z = -41  $-3v - 12 = -6 \implies v = -2$  $x - 2 + 4 = 3 \implies x = 1$ 1  $\frac{3x^2+2}{(x+2)^2} = \frac{3x^2+2}{x^2+4x+4}$ **D3**.  $\begin{array}{r} 3 \\ x^2 + 4x + 4 \overline{\smash{\big)}3x^2 + 2} \\ 3x^2 + 12x + 12 \\ \hline -12x - 10 \end{array}$ **1M** So  $\frac{3x^2+2}{(x+2)^2} = 3 - \frac{12x+10}{(x+2)^2}$ 1 Now write  $\frac{12x + 10}{(x + 2)^2} = \frac{A}{x + 2} + \frac{B}{(x + 2)^2}$ 12x + 10 = A(x + 2) + B.Equating coefficients A = 12**M1**  $2A + B = 10 \implies B = -14$ 1  $\frac{3x^2+2}{(x+2)^2} = 3 - \frac{12}{(x+2)} + \frac{14}{(x+2)^2}$ 1 **D4**.  $(3x - 2y)^{4} = (3x)^{4} + 4(3x)^{3}(-2y) + 6(3x)^{2}(-2y)^{2} + 4(3x)(-2y)^{3} + (-2y)^{4}$ **2E1** 

$$= 81x^4 - 216x^3y + 216x^2y^2 - 96xy^3 + 16y^4$$

When 
$$y = \frac{1}{x}$$
, the term which is independent of x is 216. 1

**D5.** (a) 
$$\int \frac{2e^x}{1+e^x} dx = 2 \int \frac{e^x}{1+e^x} dx$$
 **1**

$$= 2 \ln (1 + e^{x}) + c.$$
 1

(b) 
$$u = 1 - \sin x \Rightarrow du = -\cos x \, dx$$
 1

and when 
$$x = 0$$
,  $u = 1$ ;  $x = \frac{\pi}{6}$ ,  $u = 1 - \frac{1}{2} = \frac{1}{2}$ . **1**

$$\int_{0}^{\pi/6} \frac{\cos x}{(1 - \sin x)^{3/2}} \, dx = \int_{1}^{1/2} -u^{-3/2} \, du \qquad 1$$

$$= -\left[\frac{u^{-1/2}}{-\frac{1}{2}}\right]_{1}^{1/2} = \left[\frac{2}{\sqrt{u}}\right]_{1}^{1/2} \qquad \mathbf{1}$$
$$= \left[2\sqrt{2} - 2\right] \qquad \mathbf{1}$$

$$[2\sqrt{2} - 2]$$
 1

$$= 2(\sqrt{2} - 1) \approx 0.828.$$

D6. (a)  

$$f(x) = \frac{x^3 - 8x^2 + 16x + 4}{x^2 - 8x + 16}$$

$$x^2 - 8x + 16 \boxed{x^3 - 8x^2 + 16x + 4}_{\frac{x^3 - 8x^2 + 16x}{4}}$$
1

So 
$$f(x) = x + \frac{4}{(x-4)^2}$$
 (i.e.  $a = 1$  and  $b = 4$ .)  
al asymptote is  $x = 4$ .

The vertical asymptote is 
$$x = 4$$
.  
The non-vertical asymptote is  $y = x$ .

(b)

cal asymptote is y = x.  $f(x) = x + 4(x - 4)^{-2}$   $f'(x) = 1 - 8(x - 4)^{-3} = 0$  at stationary values 1

$$\frac{8}{(x-4)^3} = 1 \implies (x-4)^3 = 8 \implies x = 6$$

$$(or x^2 - 6x + 12 = 0, non-real)$$

i.e. Just one turning point.

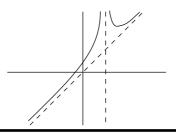
$$f'(x) = 1 - \frac{8}{(x-4)^3} \Rightarrow f''(x) = \frac{24}{(x-4)^4} > 0$$
 1

The turning point is minimum at (6, 7).

1

1

(c)



#### 1

#### [END OF MARKING INSTRUCTIONS]



### **Advanced Higher – Section E**

#### Advanced Higher Applied 2003: Section E Solutions and marks

E1. P(Taxi Yellow | Witness states Yellow)  

$$= \frac{P(Taxi Yellow \cap Witness states Yellow)}{P(Witness states Yellow)} MI$$

$$= \frac{P(Taxi Yellow \cap Witness states Yellow)}{P(Witness states Yellow) [Taxi Yellow).P(Taxi Yellow)} MI$$

$$= \frac{0.8 \times 0.15}{0.8 \times 0.15 + 0.2 \times 0.85} I, I$$

$$= \frac{0.12}{0.29} = 0.41 I$$
Alternative
$$= \frac{0.8 \times 0.15}{0.2} \int_{0.8}^{0.8} \int_{0.2}^{0.68} \int_{0.17}^{0.17} \int_{0.17 + 0.12}^{0.12} \int_{0.17 + 0.$$

 E4.
  $X \sim Bin (100, 0.75)$  1

  $\Rightarrow X$  is approximately N
 1

 and N (75, 4.33<sup>2</sup>)
 1

  $P(X \leq 70) = P(Z \leq \frac{70.5 - 75}{4.33})$  1

  $= P(Z \leq -1.04)$  1

 = 0.1492 1

| E5. | (a) | Assume that the journey time is normally distributed (with $\sigma = 3$ ).<br>$H_0$ : $\mu = 28$                                                     | 1 |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |     | $H_1: \mu \neq 28 \qquad [Must be two-tailed]$ $z = \frac{\frac{\sigma}{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{25.125 - 28}{\frac{3}{\sqrt{8}}}$ | 1 |
|     |     | = -2.71                                                                                                                                              | 1 |
|     |     | The critical region is $z < -2.58$ or $z > 2.58$ .                                                                                                   | 1 |
|     |     | Since $-2.71 < -2.58$ the null hypothesis would be rejected                                                                                          | 1 |
|     |     | at the 1% level of significance i.e. there is evidence of a change.                                                                                  | 1 |
|     | (b) | $p-value = 2 \times \Phi(-2.71)$                                                                                                                     | 1 |
|     |     | = 2(1 - 0.9966) = 0.0068                                                                                                                             | 1 |
|     |     | The fact that the p-value is less than 0.01 confirms rejection of the null                                                                           |   |
|     |     | hypothesis at the 1% level of significance                                                                                                           | 1 |
|     | (c) | The fact that 28 does not lie in the 99% confidence interval confirms rejection of the null hypothesis at the 1% level.                              | 1 |

[END OF MARKING INSTRUCTIONS]



### **Advanced Higher – Section F**

#### Advanced Higher Applied 2003: Section F Solutions and marks

F1. 
$$f(x) = \sqrt{9 - 4x}, \quad f'(x) = \frac{-2}{(9 - 4x)^{1/2}} \quad f''(x) = \frac{-4}{(9 - 4x)^{3/2}} \quad f'''(x) = \frac{-24}{(9 - 4x)^{5/2}}$$

Taylor polynomial is

$$p(2 + h) = 1 - 2h - \frac{4h^2}{2} - \frac{24h^3}{6}$$
$$= 1 - 2h - 2h^2 - 4h^3.$$
 3

Second degree approximation is p(2 + 0.03) = 1 - 0.06 - 0.0018 = 0.9382 2

Principal truncation error term is  $-4 \times 0.03^3 = -0.0001$ . Hence second order estimate cannot be guaranteed accurate to 4 decimal places. 2

F2. 
$$L(x) = \frac{(x - 0.2)(x - 0.5)}{(-0.2)(-0.5)} 1.306 + \frac{(x - 0.0)(x - 0.5)}{(0.2)(-0.3)} 1.102 + \frac{(x - 0.0)(x - 0.2)}{(0.5)(0.3)} 0.741$$
$$= (x^2 - 0.7x + 0.1) 13.06 - (x^2 - 0.5x) 18.367 + (x^2 - 0.2x) 4.490$$
$$= -0.367x^2 - 0.947x + 1.306$$

F3. Let quadratic through 
$$(x_0, f_0)$$
,  $(x_1, f_1)$ ,  $(x_2, f_2)$  be  
 $y = A_0 + A_1 (x - x_0) + A_2 (x - x_0) (x - x_1)$ .  
Then  $f_0 = A_0$ ;  $f_1 = A_0 + A_1h$ ;  $f_2 = A_0 + 2A_1h + 2A_2h^2$   
and so

$$A_1 = \frac{f_1 - f_0}{h} = \frac{\Delta f_0}{h}; \qquad A_2 = \frac{f_2 - 2f_1 + f_0}{2h^2} = \frac{\Delta^2 f_0}{2h^2}.$$

Thus

$$y = f_0 + \frac{x - x_0}{h} \Delta f_0 + \frac{(x - x_0)(x - x_1)}{2h^2} \Delta^2 f_0.$$

Setting  $x = x_0 + ph$  gives

$$y = f_0 + p\Delta f_0 + \frac{1}{2}p(p-1)\Delta^2 f_0.$$
(Can also be done by an operator expansion of  $(1 + \Delta)^p$ .)
5

F4.(a) Maximum error is 
$$8\varepsilon$$
, i.e.  $8 \times 0.0005 = 0.004$ .1(b)  $\Delta^2 f_3 = 0.167$ .1(c) Third degree polynomial would probably not be particularly good as an approximation as differences are not constant.1(d) Working from  $x = 2.0, p = 0.9$ . $(0.9)(-0.1)$ 

$$f(2.18) = 2.318 + 0.9(0.197) + \frac{(0.9)(-0.1)}{2}(0.086)$$
  
= 2.318 + 0.177 - 0.004 = 2.491 2

**F5.** (a) Simpson's rule calculation is:

|                      | 1                                                                   |                                    |                                                                 |                                                                     |           |                                                   |   |  |
|----------------------|---------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|-----------|---------------------------------------------------|---|--|
|                      | X                                                                   | f(x)                               | $m_1$                                                           | $m_{1}f(x)$                                                         | $m_2$     | $m_2 f(x)$                                        |   |  |
|                      | 0                                                                   | 0.0                                | 1                                                               | 0.0                                                                 | 1         | 0.0                                               |   |  |
|                      | 0.25                                                                | 0.04868                            |                                                                 |                                                                     | 4         | 0.19472                                           |   |  |
|                      | 0.5                                                                 | 0.15163                            | 4                                                               | 0.60653                                                             | 2         | 0.30326                                           |   |  |
|                      | 0.75                                                                | 0.26571                            |                                                                 |                                                                     | 4         | 1.06284                                           |   |  |
|                      | 1                                                                   | 0.36788                            | 1                                                               | 0.36788                                                             | 1         | 0.36788                                           |   |  |
|                      |                                                                     |                                    |                                                                 | 0.97441                                                             | -         | 1.92870                                           |   |  |
|                      | -                                                                   | $0.97441 \times 0$<br>92870 × 0.25 |                                                                 |                                                                     |           |                                                   | 4 |  |
| (b) <i>f</i>         | $f^{iv}(0) = 12$                                                    | $2; f^{iv}(1) = 1$                 | 84.                                                             |                                                                     |           |                                                   |   |  |
|                      |                                                                     | • • •                              |                                                                 | $\times 0.25^4 / 180 =$                                             | = 0·00026 | ).                                                | 2 |  |
|                      | Hence suitable estimate is $I_4 = 0.161$ .                          |                                    |                                                                 |                                                                     |           |                                                   |   |  |
| (c) V<br>2<br>1<br>V | With <i>n</i> strip<br>approximate<br>= $I_n + C$<br>With $2n$ stri | s and step size<br>ed by Simpson   | $a^{2}h$ , the '<br>'s rule (w<br>$b^{6} + \dots$<br>we h, we b | Taylor series for<br>with principal tr<br>$I_n = I_n + 160$<br>have | runcation | on of an integral error of $O(h^4)$ ) is<br>. (1) |   |  |
| 1                    | .6 × (2) -                                                          | (1) gives 15 <i>I</i>              | $= 16I_{2}$                                                     | $I_n - I_n + O(h^6)$                                                | )         |                                                   |   |  |
| i                    | i.e. $I \approx (16I_{2n} - I_n)/15 = I_{2n} + (I_{2n} - I_n)/15$   |                                    |                                                                 |                                                                     |           |                                                   |   |  |
| 1                    | I = 0.16072 + (0.16072 - 0.16240)/15 = 0.16061                      |                                    |                                                                 |                                                                     |           |                                                   |   |  |
| (                    | or 0·1606 to                                                        | suitable accu                      | racy.                                                           |                                                                     |           |                                                   | 1 |  |

#### [END OF MARKING INSTRUCTIONS]



### **Advanced Higher – Section G**

#### Advanced Higher Applied 2003: Section G Solutions and marks

G1. We are given that 
$$\frac{d^2x}{dt^2} = 12 - 3t^2$$
,  $v(0) = 0$ ,  $s(0) = 0$   
 $\Rightarrow v(t) = 12t - t^3$ 

$$\Rightarrow \qquad s(t) = 6t^2 - \frac{1}{4}t^4.$$

When the particle comes to rest

$$v(t) = 0 \implies 12t - t^{3} = 0$$
  

$$\Rightarrow t^{2} = 0 \text{ or } t^{2} = 12$$
  

$$\Rightarrow t = 2\sqrt{3} \text{ (since } t > 0).$$
1

The position at this time is

$$s(2\sqrt{3}) = 6 \times 12 - \frac{1}{4} \times 12^2 = 72 - 36 = 36 \text{ m}$$
 1

G2. (a) Given 
$$\mathbf{a}_A = -2\mathbf{j}$$
;  $\mathbf{v}_A(0) = \mathbf{i}$ ;  $\mathbf{r}_A(0) = -\mathbf{i}$   
 $\mathbf{v}_A(t) = -2t\mathbf{j} + \mathbf{c} = \mathbf{i} - 2t\mathbf{j}$  1  
 $\Rightarrow \mathbf{r}_A(t) = t\mathbf{i} - t^2\mathbf{j} - \mathbf{i} = (t - 1)\mathbf{i} - t^2\mathbf{j}$  1

(b) (i)

This

$$_{A}\mathbf{r}_{B} = \mathbf{r}_{A} - \mathbf{r}_{B} = (2 - t)\mathbf{i} - \mathbf{j}$$
 1

(ii) The square of the distance between A and B is

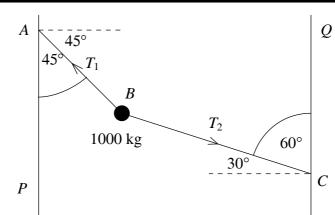
$$|_{A}\mathbf{r}_{B}|^{2} = (2 - t)^{2} + 1.$$
 1

has minimum when 
$$t = 2$$
, 1  
he minimum distance is 1 metre. 1

and the minimum distance is 1 metre.

(Alternatively: 1 for differentiating and getting t = 2 and 1 for min. distance.)





Resolving forces horizontally (a)

$$\cos 45^{\circ} = T_2 \cos 30^{\circ}$$

$$\frac{T_1}{\sqrt{2}} = \frac{\sqrt{3}}{2} T_2$$

$$T_1 = \frac{\sqrt{3}}{\sqrt{2}} T_2$$
1

 $T_1$ 

#### (b) Resolving vertically

$$T_1 \sin 45^\circ = 1000g + T_2 \sin 30^\circ \qquad 1$$

$$\frac{1}{\sqrt{2}}T_1 - \frac{1}{2}T_2 = 1000g$$

$$\frac{1}{2}(\sqrt{3} - 1)T_2 = 1000g$$
 1

$$T_2 = \frac{2000g}{\sqrt{3} - 1} \approx 26774 \text{ N}$$

С

1

(a) Resolving perpendicular to the chute gives  $R = \frac{1}{\sqrt{2}}mg$  so  $F = \frac{1}{2} \times \frac{1}{\sqrt{2}}mg = \frac{mg}{2\sqrt{2}}$ 

mg

F

 $\mathcal{A} R$ 

45°

В

A

Over section *AB*, applying Newton II

$$ma = mg\sin 45^\circ - \frac{1}{2\sqrt{2}}mg$$

$$\Rightarrow \qquad a = \frac{g}{2\sqrt{2}}.$$

The speed of Jill at *B*, 
$$v_B$$
, is given by  $v_B^2 = 2aL = \frac{gL}{\sqrt{2}} \implies v_B = \sqrt{\frac{gL}{\sqrt{2}}}$ . **1**

(b) Over the section *BC*, applying Newton II

$$ma_{BC} = -\frac{1}{2}mg$$
$$a_{BC} = -\frac{1}{2}g.$$
 1

so that at C

$$v_C^2 = \frac{gL}{\sqrt{2}} + 2\left(\frac{-g}{2}\right) \times \frac{L}{2}$$
 1

$$= \frac{gL}{2}(\sqrt{2} - 1)$$
 1

$$\Rightarrow \qquad v_C = \sqrt{\frac{gL}{2}(\sqrt{2} - 1)}.$$

**G5.** (a)  $\mathbf{V} = V(\cos 30^{\circ}\mathbf{i} + \sin 30^{\circ}\mathbf{j}) = \frac{1}{2}V(\sqrt{3}\mathbf{i} + \mathbf{j})$  or for  $V_y$  only. **1** The y-component of the equation of motion gives

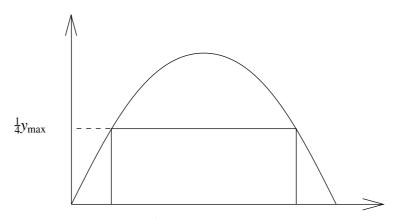
$$\ddot{y} = -g \Rightarrow \dot{y} = \frac{V}{2} - gt$$
 1

$$\Rightarrow y = \frac{Vt}{2} - \frac{1}{2}gt^2 = \frac{t}{2}(V - gt).$$
 1

(b) Note that  $\dot{y} = \frac{1}{2}V - gt$  so the maximum height occurs when  $t = \frac{V}{2g}$ . **1** Hence

$$v_{\max} = \frac{V}{4g} \left( V - \frac{V}{2} \right) = \frac{V^2}{8g}.$$
 1

(c)



We need the times when  $y = \frac{1}{4}y_{max}$ .

$$\Rightarrow \frac{1}{2}Vt - \frac{1}{2}gt^2 = \frac{V^2}{32g}$$

$$\Rightarrow t^2 - \frac{V}{g}t + \frac{V^2}{16g^2} = 0 \qquad 1$$

$$= \frac{V}{2g} \left[ 1 \pm \frac{\sqrt{3}}{2} \right]$$
 1

The time the missile appears on the radar is

$$\frac{V}{2g}\left[1 + \frac{\sqrt{3}}{2}\right] - \frac{V}{2g}\left[1 - \frac{\sqrt{3}}{2}\right]$$

$$= \frac{\sqrt{3}V}{2g}.$$
1

#### [END OF MARKING INSTRUCTIONS]