Section G (Mechanics 1)

Answer all the questions.

Answer these questions in a separate answer book, showing clearly the section chosen.

Where appropriate, candidates should take the magnitude of the acceleration due to gravity as 9.8 m s$^{-2}$.

G1. A motorcyclist moves from rest along a straight, horizontal road, with acceleration $2t$ m s$^{-2}$, where t is the unit vector in the direction of motion, and t is the time in seconds from the start of the motion.

Calculate the distance travelled by the motorcyclist in the time taken for the speed to increase from 1 m s$^{-1}$ to 9 m s$^{-1}$.

G2. A car of mass m kilograms is travelling in a straight line along a horizontal road at constant speed U metres per second when the driver applies the brakes. The brakes cause a constant retarding force R newtons which brings the car to rest in a distance of D metres.

Find an expression for the stopping distance D in terms of m, U and R.

Comment on how the stopping distance depends on the mass of the car.

G3. The diagram below shows a car of mass m kilograms which is held in equilibrium on the back of a stationary lorry by means of a light inextensible chain AB which runs parallel to the sloping surface. This surface is inclined at an angle of θ to the horizontal and the coefficient of friction between the car and the surface is μ.

![Diagram of car on lorry](image)

When $\theta = 30^\circ$ the tension required in the chain AB to prevent the car slipping down the slope is T newtons. When θ is increased to 45° the tension required in AB becomes $2T$ newtons.

(a) When $\theta = 30^\circ$ show that

$$T = \frac{1}{2}(1 - \sqrt{3}\mu)mg,$$

where g m s$^{-2}$ is the magnitude of the acceleration due to gravity.

(b) Find an expression for T in terms of m, μ, and g when $\theta = 45^\circ$.

(c) Find the value of μ.

[Turn over for Questions G4 and G5 on Page twenty]

[X106/701] Page nineteen
G4. A light aircraft is travelling due north at a constant altitude of 1 km with constant speed $100\sqrt{2}$ km/h. At 1 pm a helicopter is $50\sqrt{2}$ km due west of the aircraft, and travelling in a north easterly direction at a constant altitude of 2 km with constant speed 100 km/h.

Taking the position of the aircraft at 1 pm as the origin, and defining an appropriate set of unit vectors, find the position of the helicopter relative to the aircraft in terms of time t hours after 1 pm.

G5. An artillery shell is launched from the point A, which is H metres vertically above the point O on level ground, as shown below. The shell is projected at an angle α above the horizontal, where $0 < \alpha < \frac{\pi}{2}$, with speed $\sqrt{2gH}$ metres per second, where g m s$^{-2}$ is the magnitude of the acceleration due to gravity.

\[y = H + x\tan\alpha - \frac{(1 + \tan^2\alpha)}{4H}x^2. \]

[Note that $\frac{1}{\cos^2\alpha} = 1 + \tan^2\alpha$.]

(a) Show that, referred to the axes shown, the equation of the trajectory of the shell is

(b) The shell lands at the point B on the ground, a horizontal distance of $2H$ metres from O, as shown.

Show that $\tan\alpha = 2$.

(c) Show further that the maximum height above the ground attained by the shell is $\frac{3}{4}H$ metres.

[END OF SECTION G]

[END OF QUESTION PAPER]