Advanced Higher Formula Lis \dagger

Note: no formulae given in exam - remember everything!

Unit 1

Binomial Theorem

Factorial n

$$
n!\stackrel{d e f}{=} n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1
$$

Binomial Coefficient

$$
{ }^{n} C_{r} \equiv\binom{n}{r} \stackrel{\text { def }}{=} \frac{n!}{r!(n-r)!}
$$

Symmetry Identity

$$
\binom{n}{r}=\binom{n}{n-r}
$$

Khayyam-Pascal Identity

$$
\binom{n}{r-1}+\binom{n}{r}=\binom{n+1}{r}
$$

Binomial Theorem

$$
(x+y)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{n-r} y^{r}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r} y^{n-r}
$$

General Term in Binomial Theorem

$$
{ }^{n} C_{r} x^{r} y^{n-r}
$$

Partial Fractions

Non-Repeated Linear Factor: $(a x+b)$

$$
\frac{S}{a x+b}
$$

Repeated Linear Factor: $(a x+b)^{2}$

$$
\frac{S}{a x+b}+\frac{T}{(a x+b)^{2}}
$$

Irreducible Quadratic Factor: $\left(a x^{2}+b x+c\right)$

$$
\frac{S x+T}{a x^{2}+b x+c}
$$

Differential Calculus

$n^{\text {th }}$ Derivative

$$
\frac{d^{n} f}{d x^{n}} \stackrel{d e f}{=} \underbrace{\frac{d}{d x}\left(\frac{d}{d x}\left(\frac{d}{d x} \cdots\left(\frac{d}{d x}\left(\frac{d}{d x} f\right)\right) \cdots\right)\right)}_{n \text { times }}
$$

Product Rule

$$
\begin{gathered}
\Delta(f g)=(\Delta f) g+f(\Delta g) \\
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
\end{gathered}
$$

Quotient Rule

$$
\begin{aligned}
& D\left(\frac{f}{g}\right)=\frac{(D f) g-f(D g)}{g^{2}} \\
& (f / g)^{\prime}=\frac{1}{g^{2}}\left(f^{\prime} g-f g^{\prime}\right)
\end{aligned}
$$

Reciprocal Trigonometric Functions

$$
\begin{aligned}
& \sec x \stackrel{\operatorname{def}}{=} \frac{1}{\cos x} \\
& \operatorname{cosec} x \stackrel{\text { def }}{=} \frac{1}{\sin x} \\
& \cot x \stackrel{\operatorname{def}}{=} \frac{\cos x}{\sin x}
\end{aligned}
$$

Trigonometric Identities

$$
\begin{array}{r}
1+\tan ^{2} x=\sec ^{2} x \\
1+\cot ^{2} x=\operatorname{cosec}^{2} x
\end{array}
$$

Derivatives of Reciprocal Trigonometric Functions and $\tan x$

$$
\begin{gathered}
D(\sec x)=\sec x \tan x \\
D(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x \\
D(\cot x)=-\operatorname{cosec}^{2} x \\
D(\tan x)=\sec ^{2} x
\end{gathered}
$$

Derivative of Natural Logarithm

$$
D(\ln x)=\frac{1}{x}
$$

Derivative of Exponential

$$
\begin{aligned}
D\left(e^{x}\right) & =e^{x} \\
D(\exp x) & =\exp x
\end{aligned}
$$

Applications of Differentiation

Velocity

$$
v(t) \stackrel{d e f}{=} \frac{d s}{d t} \equiv \dot{s}(t)
$$

Acceleration

$$
a(t) \stackrel{d e f}{=} \frac{d v}{d t}=\frac{d^{2} s}{d t^{2}} \equiv \ddot{s}(t)
$$

Integral Calculus
Integrals of e^{x}, x^{-1}, and $\sec ^{2} x$

$$
\begin{gathered}
\int e^{x} d x=e^{x}+c \\
\int \frac{1}{x} d x=\ln |x|+c \\
\int \sec ^{2} x d x=\tan x+c
\end{gathered}
$$

Generic Forms of Integration by Substitution

$$
\begin{aligned}
& \int(D f) f d x=\frac{1}{2} f^{2}+C \\
& \int \frac{\Delta f}{f} d x=\ln |f|+C
\end{aligned}
$$

Area Between a Function and the y-axis

$$
A=\int_{c}^{d} f^{-1}(y) d y
$$

Area Between 2 Curves about the y-axis

$$
A=\int_{c}^{d}\left(f^{-1}(y)-g^{-1}(y)\right) d y
$$

Volume of Solid of Revolution about x-axis

$$
V=\pi \int_{a}^{b} y^{2} d x
$$

Volume of Solid of Revolution about y-axis

$$
V=\pi \int_{c}^{d} x^{2} d y
$$

Rectilinear Motion

$$
\begin{aligned}
& v(t)=\int a(t) d t \\
& s(t)=\int v(t) d t
\end{aligned}
$$

Functions and Graphs

Modulus Function

$$
|x| \stackrel{\text { def }}{=}\left\{\begin{array}{cl}
x & (x \geq 0) \\
-x & (x<0)
\end{array}\right.
$$

Modulus of a Function

$$
|f| \stackrel{\operatorname{def}}{=}\left\{\begin{array}{cc}
f & (f \geq 0) \\
-f & (f<0)
\end{array}\right.
$$

Domain and Range of Inverse Trigonometric Functions

$$
\begin{aligned}
& \operatorname{dom}\left(\sin ^{-1} x\right)=[-1,1], \quad \operatorname{ran}\left(\sin ^{-1} x\right)=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
& \operatorname{dom}\left(\cos ^{-1} x\right)=[-1,1], \quad \operatorname{ran}\left(\cos ^{-1} x\right)=[0, \pi] \\
& \operatorname{dom}\left(\tan ^{-1} x\right)=\mathbb{R}, \quad \operatorname{ran}\left(\tan ^{-1} x\right)=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{aligned}
$$

Even and Odd Functions

$$
\begin{gathered}
\text { Even: } f(x)=f(-x) \quad(\forall x \in \operatorname{dom} f) \\
\text { Odd : } f(x)=-f(x) \quad(\forall x \in \operatorname{dom} f)
\end{gathered}
$$

Asymptotes

$$
\begin{gathered}
\frac{p(x)}{q(x)}=f(x)+\frac{g(x)}{q(x)} \\
\text { Vertical Asymptote(s) : solve } q(x)=0 \text { for } x \\
f \text { constant } \Rightarrow \text { Horizontal Asymptote : } y=\text { constant } \\
f(x)=m x+c \Rightarrow \text { Oblique Asymptote : } y=m x+c
\end{gathered}
$$

Gaussian Elimination

Elementary Row Operations

Interchange 2 or more rows: $R_{i} \leftrightarrow R_{j}$

Multiply a row by a non-zero real number : $R_{i} \rightarrow k R_{j}$

Replace a row by adding it to a multiple of another row : $R_{i} \rightarrow R_{i}+k R_{j}$

No Solutions

$$
\left(\begin{array}{lll|l}
a & b & c & j \\
0 & e & f & k \\
0 & 0 & 0 & l
\end{array}\right) \quad(l \neq 0)
$$

Unique Solution

$$
\left(\begin{array}{lll|l}
a & b & c & j \\
0 & e & f & k \\
0 & 0 & i & /
\end{array}\right) \quad(i \neq 0)
$$

Infinitely Many Solutions

$$
\left(\begin{array}{lll|l}
a & b & c & j \\
0 & e & f & k \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Unit 2

Proof and Elementary Number Theory

Even and Odd Numbers

$$
\begin{gathered}
n=2 k \\
n=2 k+1 \text { or } n=2 k-1
\end{gathered}
$$

Further Differentiation

Derivative of Inverse Function

$$
\begin{aligned}
\Delta\left(f^{-1}\right) & =\frac{1}{(D f) \circ f^{-1}} \\
\frac{d x}{d y} & =\frac{1}{\left(\frac{d y}{d x}\right)}
\end{aligned}
$$

Derivatives of Inverse Trigonometric Functions

$$
\begin{aligned}
& D\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& D\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}} \\
& D\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}
\end{aligned}
$$

$1^{\text {st }}$ Derivative of Parametric Functions

$$
\frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t}=\frac{\dot{y}}{\dot{x}}
$$

2nd Derivative of Parametric Functions

$$
\frac{d^{2} y}{d x^{2}}=\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\dot{x}^{3}}=\frac{d}{d t}\left(\frac{\dot{y}}{\dot{x}}\right) \times \frac{1}{\dot{x}}
$$

Applications of Differentiation

Displacement Vector and Distance

$$
\begin{gathered}
\boldsymbol{s}(t) \stackrel{\text { def }}{=}(x(t), y(t))=x(t) \mathbf{i}+y(t) \mathbf{j} \\
|\boldsymbol{s}(t)| \stackrel{\text { def }}{=} \sqrt{x^{2}+y^{2}}
\end{gathered}
$$

Velocity Vector, Speed and Direction of Motion (Velocity)

$$
\begin{gathered}
\boldsymbol{v}(t) \stackrel{\text { def }}{=} \frac{d s}{d t}=(\dot{x}(t), \dot{y}(t))=\dot{x}(t) \mathbf{i}+\dot{y}(t) \mathbf{j} \\
|\boldsymbol{v}(t)| \stackrel{\text { def }}{=} \sqrt{\dot{x}^{2}+\dot{y}^{2}} \\
\tan \theta=\frac{\dot{y}}{\dot{x}}
\end{gathered}
$$

Acceleration Vector, Magnitude and Direction of Acceleration

$$
\begin{gathered}
a(t) \stackrel{\operatorname{def}}{=} \frac{d v}{d t}=(\ddot{x}(t), \ddot{y}(t))=\ddot{x}(t) \mathbf{i}+\ddot{y}(t) \mathbf{j} \\
|a(t)| \stackrel{d e f}{=} \sqrt{\ddot{x}^{2}+\ddot{y}^{2}} \\
\tan n=\frac{\ddot{y}}{\ddot{x}}
\end{gathered}
$$

Further Integration

Standard Integrals

$$
\begin{aligned}
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+C \\
& \int \frac{1}{a^{2}+x^{2}} d x=\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C
\end{aligned}
$$

Integration by Parts

$$
\begin{gathered}
\int u(D v)=u v-\int(D u) v \\
\int_{a}^{b} u(D v) d x=[u v]_{a}^{b}-\int_{a}^{b}(D u) v d x
\end{gathered}
$$

Separable Differential Equation

$$
\frac{d y}{d x}=f(x) g(y)
$$

Complex Numbers

Definition of \mathbf{i}

$$
i^{2} \stackrel{\text { def }}{=}-1
$$

Cartesian Form

$$
z=x+i y
$$

Complex Conjugate

$$
\bar{z} \stackrel{\operatorname{def}}{=} x-i y
$$

Modulus and Principal Argument

$$
\begin{gathered}
r \equiv|z| \stackrel{\operatorname{def}}{=} \sqrt{x^{2}+y^{2}} \\
\theta \equiv \arg z \stackrel{\text { def }}{=} \tan ^{-1}\left(\frac{y}{x}\right) \quad(\theta \in(-\pi, \pi])
\end{gathered}
$$

Generic Argument

$$
\operatorname{Arg} z \stackrel{\operatorname{def}}{=}\{\arg z+2 \pi n: n \in \mathbb{Z}\}
$$

Polar Form

$$
z=r(\cos \theta+i \sin \theta) \equiv r \operatorname{cis} \theta
$$

Properties of Conjugate, Modulus and Argument

$$
\begin{gathered}
|z|^{2}=z \bar{z}=x^{2}+y^{2} \\
\overline{z \pm w}=\bar{z} \pm \bar{w} \\
\overline{z w}=\bar{z} \bar{w} \\
\overline{\left(\frac{z}{w}\right)}=\frac{\bar{z}}{\bar{w}} \\
|z w|=|z||w|, \operatorname{Arg} z w=\operatorname{Arg} z+\operatorname{Arg} w
\end{gathered}
$$

$$
\left|\frac{z}{w}\right|=\frac{|z|}{|w|}, \quad \operatorname{Arg} \frac{z}{w}=\operatorname{Arg} z-\operatorname{Arg} w
$$

De Moivre's Theorem

$$
z=r(\cos \theta+i \sin \theta) \Rightarrow z^{k}=r^{k}(\cos k \theta+i \sin k \theta)
$$

$\underline{n}^{\text {th }}$ Roots of $z^{n}=w$ with $w=(\cos \theta+i \sin \theta)$

$$
\begin{gathered}
z_{k}=r^{1 / n}\left(\cos \left(\frac{\theta+2 \pi k}{n}\right)+\sin \left(\frac{\theta+2 \pi k}{n}\right)\right) \\
(k=0,1,2, \ldots, n-1)
\end{gathered}
$$

Roots of Unity

$$
\text { Solve } z^{n}=1
$$

Sequences and Series

Sum to n Terms of a Sequence

$$
S_{n} \stackrel{\operatorname{def}}{=} \sum_{r=1}^{n} u_{r}
$$

$n^{\text {th }}$ Term Given Successive Sums

$$
u_{n}=S_{n+1}-S_{n}
$$

Sum to Infinity

$$
S_{\infty} \stackrel{\operatorname{def}}{=} \lim _{n \rightarrow \infty} S_{n}
$$

$n^{\text {th }}$ Term of an Arithmetic Sequence

$$
u_{n}=a+(n-1) d \quad(a \in \mathbb{R}, d \in \mathbb{R} \backslash\{0\})
$$

$$
S_{n}=\frac{n}{2}(2 a+(n-1) d)
$$

$n^{\text {th }}$ Term of a Geometric Sequence

$$
u_{n}=a r^{n-1} \quad(a \in \mathbb{R} \backslash\{0\}, r \in \mathbb{R} \backslash\{0,1\})
$$

Sum to n Terms of a Geometric Sequence

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

Sum to Infinity of a Geometric Sequence

$$
S_{\infty}=\frac{a}{1-r}
$$

Expansion of $(1-x)^{-1}$

$$
(1-x)^{-1}=\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \stackrel{\text { def }}{=} \sum_{i=0}^{\infty} x^{i}
$$

Definition of e as a Power Series

$$
e \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=2+\frac{1}{2!}+\frac{1}{3!}+\ldots=\sum_{b=0}^{\infty} \frac{1}{b!}
$$

Definition of e^{x} as a Power Series

$$
e^{x} \stackrel{\operatorname{def}}{=} \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

Sum of the Number $1 n$ times

$$
\sum_{r=1}^{n} 1=n
$$

$$
\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)
$$

Sum of the Squares of the First n Natural Numbers

$$
\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

Sum of the Cubes of the First n Natural Numbers

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}=\left(\sum_{r=1}^{n} r\right)^{2}
$$

Unit 3

Matrices

Determinant of a 2×2 Matrix

$$
|A| \equiv\left|\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right|=a d-b c
$$

Determinant of a 3×3 Matrix

$$
|A| \equiv\left|\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\right|=a\left|\left(\begin{array}{ll}
e & f \\
h & i
\end{array}\right)\right|-b\left|\left(\begin{array}{ll}
d & f \\
g & i
\end{array}\right)\right|+c\left|\left(\begin{array}{ll}
d & e \\
g & h
\end{array}\right)\right|
$$

Inverse of a 2×2 Matrix

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

$$
\begin{aligned}
& A+B=B+A \\
&(A+B)+C=A+(B+C) \\
& k(A+B)=k A+k B \\
&(A+B)^{\top}=A^{\top}+B^{\top} \\
&\left(A^{\top}\right)^{\top}=A \\
&(k A)^{\top}=k A^{\top} \\
& A(B C)=(A B) C \\
& A(B+C)=A B+A C \\
&(A B)^{\top}=B^{\top} A^{\top} \\
&|A B|=|A| \times|B| \\
&(k\in \mathbb{R}, n \in \mathbb{N}, A \text { is } n \times n) \\
&|k A|=A^{\top} \mid=|A| \\
&\left|A^{-1}\right|=\frac{1}{|A|} \\
&\left(A^{-1}\right)^{-1}=A \\
&\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1} \\
&\left(k A^{-1}\right)=\frac{1}{k} A^{-1} \\
&(A B)^{-1}=B^{-1} A^{-1}
\end{aligned}
$$

Vectors

Vector Product

$$
\mathbf{a} \times \mathbf{b} \stackrel{\text { def }}{=}|\mathbf{a}||\mathbf{b}| \sin \theta \mathbf{n}
$$

$$
\mathbf{a} \times \mathbf{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
$$

Properties of the Vector Product

$$
\begin{gathered}
i \times j=k \\
j \times k=i \\
k \times i=j \\
i \times i=j \times j=k \times k=0 \\
a \times a=0 \\
a \times b=-b \times a \\
a \times(b+c)=(a \times b)+(a \times c) \\
(a+b) \times c=(a \times c)+(b \times c)
\end{gathered}
$$

Scalar Triple Product

$$
[\mathbf{a}, \mathrm{b}, \mathrm{c}] \equiv \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) \stackrel{d e f}{=}\left|\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)\right|
$$

Cartesian Equation of a Plane with normal $(a, b, c)^{T}$

$$
a x+b y+c z=d
$$

Vector Equation of a Plane with b, c Parallel to Plane and a in Plane

$$
r=a+t b+u c
$$

Vector Equation of a Line with Direction $(a, b, c)^{T}$ and a on Line

$$
\mathrm{p}=\mathbf{a}+t \mathrm{u}
$$

Parametric Equations of a Line

$$
x=x_{1}+a t, \quad y=y_{1}+b t, \quad z=z_{1}+c t
$$

Symmetric Equations of a Line

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}=t
$$

Further Sequences and Series

Maclaurin Expansion of a Function

$$
\begin{gathered}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \\
f(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+\ldots
\end{gathered}
$$

Specific Maclaurin Expansions

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
\end{aligned}
$$

$$
\begin{aligned}
& \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}
\end{aligned}
$$

Binomial Series

$$
(1+x)^{r}=\sum_{k=0}^{\infty}\binom{r}{k} x^{k}
$$

Further Ordinary Differential Equations

$1^{\text {st }}$ Order Integrating Factor Differential Equations

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

solved by multiplying both sides by the Integrating Factor $e^{\int \rho(x) d x}$ and integrating both sides

2nd Order Ordinary Differential Equations

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)
$$

solved by adding Complementary Function to Particular Integral.

Further Proof and Number Theory

Linear Diophantine Equations

Solutions of $a x+b y=c$ are $x_{n}=k s+b n$ and $y_{n}=k t-a n$, where $n \in \mathbb{Z}$ and $c=k d$ with $\operatorname{GCD}(a, b) \equiv d=a s+b t$.

