Advanced Higher Derivatives

Note: nothing is given in the exam - remember everything!
In the following, a, b and n are real constants and $f(x)$ a realvalued function with no restrictions unless otherwise stated.

Sine and Cosine

$$
\begin{aligned}
& \frac{d}{d x}(\sin f(x))^{n}=n f^{\prime}(x)(\sin f(x))^{n-1} \cos f(x) \\
& \frac{d}{d x}(\cos f(x))^{n}=-n f^{\prime}(x)(\cos f(x))^{n-1} \sin f(x)
\end{aligned}
$$

Special cases

- $n=1$ gives

$$
\begin{gathered}
\frac{d}{d x}(\sin f(x))=f^{\prime}(x) \cos f(x) \\
\frac{d}{d x}(\cos f(x))=-f^{\prime}(x) \sin f(x)
\end{gathered}
$$

Tangent

$$
\begin{gathered}
\frac{d}{d x}(\tan f(x))^{n}=n f^{\prime}(x)(\tan f(x))^{n-1} \sec ^{2} f(x) \\
\left(f(x) \neq \frac{(2 m+1) \pi}{2}, m \in \mathbb{Z}\right)
\end{gathered}
$$

Special cases

- $n=1$ gives

$$
\frac{d}{d x}(\tan f(x))=f^{\prime}(x) \sec ^{2} f(x)
$$

- $f(x)=a x+b$ gives

$$
\frac{d}{d x}(\tan (a x+b))^{n}=n a(\tan (a x+b))^{n-1} \sec ^{2}(a x+b)
$$

- $f(x)=a x+b, n=1$ gives

$$
\frac{d}{d x} \tan (a x+b)=a \sec ^{2}(a x+b)
$$

- $f(x)=x, n=1$ gives

$$
\frac{d}{d x} \tan x=\sec ^{2} x
$$

Reciprocal Trigonometric Functions

$$
\begin{gathered}
\frac{d}{d x}(\sec f(x))^{n}=n f^{\prime}(x)(\sec f(x))^{n-1} \sec f(x) \tan f(x) \\
\left(f(x) \neq \frac{(2 m+1) \pi}{2}, m \in \mathbb{Z}\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{d}{d x}(\operatorname{cosec} f(x))^{n}=-n f^{\prime}(x)(\operatorname{cosec} f(x))^{n-1} \operatorname{cosec} f(x) \cot f(x) \\
(f(x) \neq m \pi, m \in \mathbb{Z})
\end{gathered}
$$

$$
\begin{gathered}
\frac{d}{d x}(\cot f(x))^{n}=-n f^{\prime}(x)(\cot f(x))^{n-1} \operatorname{cosec}^{2} f(x) \\
(f(x) \neq m \pi, m \in \mathbb{Z})
\end{gathered}
$$

Special cases

- $n=1$ gives

$$
\begin{gathered}
\frac{d}{d x}(\sec f(x))=f^{\prime}(x) \sec f(x) \tan f(x) \\
\frac{d}{d x}(\operatorname{cosec} f(x))=-f^{\prime}(x) \operatorname{cosec} f(x) \cot f(x) \\
\frac{d}{d x}(\cot f(x))=-f^{\prime}(x) \operatorname{cosec}^{2} f(x)
\end{gathered}
$$

- $f(x)=a x+b$ gives

$$
\begin{gathered}
\frac{d}{d x}(\sec (a x+b))^{n}=n a(\sec (a x+b))^{n-1} \sec (a x+b) \tan (a x+b) \\
\frac{d}{d x}(\operatorname{cosec}(a x+b))^{n}=-n a(\operatorname{cosec}(a x+b))^{n-1} \operatorname{cosec}(a x+b) \cot (a x+b) \\
\frac{d}{d x}(\cot (a x+b))^{n}=-n a(\cot (a x+b))^{n-1} \operatorname{cosec}^{2}(a x+b) \\
\quad f(x)=a x+b, n=1 \text { gives } \\
\frac{d}{d x} \sec (a x+b)=a \sec (a x+b) \tan (a x+b) \\
\frac{d}{d x} \operatorname{cosec}(a x+b)=-a \operatorname{cosec}(a x+b) \cot (a x+b)
\end{gathered}
$$

$$
\frac{d}{d x} \cot (a x+b)=-a \operatorname{cosec}^{2}(a x+b)
$$

- $f(x)=x, n=1$ gives

$$
\begin{aligned}
& \frac{d}{d x} \sec x=\sec x \tan x \\
& \frac{d}{d x} \operatorname{cosec} x=-\operatorname{cosec} x \cot x \\
& \frac{d}{d x} \cot x=-\operatorname{cosec}^{2} x
\end{aligned}
$$

Inverse Trigonometric Functions

$$
\begin{gathered}
\frac{d}{d x}\left(\sin ^{-1} f(x)\right)^{n}=\frac{n f^{\prime}(x)\left(\sin ^{-1} f(x)\right)^{n-1}}{\sqrt{1-(f(x))^{2}}}(|f(x)|<1) \\
\frac{d}{d x}\left(\cos ^{-1} f(x)\right)^{n}=-\frac{n f^{\prime}(x)\left(\cos ^{-1} f(x)\right)^{n-1}}{\sqrt{1-(f(x))^{2}}}(|f(x)|<1) \\
\frac{d}{d x}\left(\tan ^{-1} f(x)\right)^{n}=\frac{n f^{\prime}(x)\left(\tan ^{-1} f(x)\right)^{n-1}}{1+(f(x))^{2}}
\end{gathered}
$$

Special cases

- $n=1$ gives

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1} f(x) & =\frac{f^{\prime}(x)}{\sqrt{1-(f(x))^{2}}} \\
\frac{d}{d x} \cos ^{-1} f(x) & =-\frac{f^{\prime}(x)}{\sqrt{1-(f(x))^{2}}} \\
\frac{d}{d x} \tan ^{-1} f(x) & =\frac{f^{\prime}(x)}{1+(f(x))^{2}}
\end{aligned}
$$

- $f(x)=\frac{x}{a}(a \neq 0), n=1$ gives

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1}\left(\frac{x}{a}\right) & =\frac{1}{\sqrt{a^{2}-x^{2}}} \\
\frac{d}{d x} \cos ^{-1}\left(\frac{x}{a}\right) & =-\frac{1}{\sqrt{a^{2}-x^{2}}} \\
\frac{d}{d x} \tan ^{-1}\left(\frac{x}{a}\right) & =\frac{a}{a^{2}+x^{2}}
\end{aligned}
$$

- $f(x)=x, n=1$ gives

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1} x & =\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \cos ^{-1} x & =-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \tan ^{-1} x & =\frac{1}{1+x^{2}}
\end{aligned}
$$

Exponentials

$$
\frac{d}{d x} e^{f(x)}=f^{\prime}(x) e^{f(x)}
$$

Special cases

- $f(x)=a x+b$ gives

$$
\frac{d}{d x} e^{a x+b}=a e^{a x+b}
$$

- $f(x)=x$ gives

$$
\frac{d}{d x} e^{x}=e^{x}
$$

Logarithms

$$
\frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)} \quad(f(x)>0)
$$

Special cases

- $f(x)=a x+b$ gives

$$
\frac{d}{d x} \ln (a x+b)=\frac{a}{a x+b}
$$

- $\quad f(x)=x$ gives

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

