19 / 8 / 17
Force, Energy and Periodic Motion - Lesson 7

Hooke's Law

LI

- Know and apply Hooke's Law.

SC

- Algebra.
- Free Body Diagrams (FBDs).

The natural length of a spring is its unextended or uncompressed length (its length in a 'natural state')

The spring tension is the restoring force tending to pull/push the spring back to its natural state after it has been extended/compressed

Hooke's Law states that the spring tension is directly proportional to the extension/compression of the spring from its equilibrium position (natural state) and acts in a direction opposite to that of the extension/compression

A Hookean object is one that obeys Hooke's Law

Consider a spring of natural length L that is extended a distance x from its equilibrium position:

L

(6SOMOPOOOOOO

$$
L+x
$$

Taking the origin to be at the leftmost position of the spring, taking right as positive, the spring tension in the extended spring to be T, and the proportionality constant k (the spring constant/stiffness constant), Hooke's Law is,

$$
\begin{array}{rlrl}
& & \underline{\mathbf{T}} & =-k \underline{\mathbf{x}} \\
\therefore & \underline{T} \underline{\mathbf{i}} & =-k(x \underline{\mathbf{i}}) \\
\Rightarrow & & \underline{T} & =-k x
\end{array}
$$

Defining the elastic modulus (aka modulus of elasticity aka modulus) λ by $\lambda=k L$, Hooke's Law can be written as,

$$
T=-\frac{\lambda}{L} \times
$$

This equation is also true for the case of a compressed spring. Hooke's Law also applies to elastic strings; for a single elastic string, there is only extension. In cases where strings are attached, there may be compression.

Example 1

An elastic string has natural length 4 m and modulus 16 N .
Find the tension in the string when the extension is 60 cm .

Tension is 2.4 N to the left (or, opposite to extension)

Example 2

A spring is of natural length 3.5 m and modulus 35 N .
If the thrust in the spring when it is compressed is 27 N , find the length of the compressed spring.
3.5 m

$$
T=-\frac{\lambda}{L} x
$$

$$
\therefore \quad 27=-\frac{35}{3.5} x
$$

$$
\Rightarrow \quad 27=-10 x
$$

$$
\Rightarrow \quad x=-2.7 m
$$

This is the compression (not the compressed length) to the left. The compressed length $L_{\text {comp. }}$ is the natural length minus the size of this compression. So,

$$
\begin{array}{rlrl}
& & L_{\text {comp. }}=L-|x| \\
\therefore & L_{\text {come }}=3.5-2.7 \\
\Rightarrow & L_{\text {come }}=0.8 \mathrm{~m}
\end{array}
$$

Example 3

When the length of a spring is 120% of its unstretched length, the thrust in the spring is 8 N .

Find the modulus of the spring.

The extension is,

$$
\begin{array}{rlrl}
x & =1.2 L-L \\
\Rightarrow & & x & =0.2 L \\
& & =-\frac{\lambda}{L} x \\
& \therefore & -8 & =-\frac{\lambda}{L}(0.2 L) \\
\Rightarrow & -8 & =-0.2 \lambda \\
\Rightarrow & & \lambda & =40 N
\end{array}
$$

Example 4

When an elastic string is stretched to a length of 22 cm , the tension in the string is 17 N .

If the modulus of the string is 51 N , find the string's natural length.

The extension is,

$$
\begin{array}{rlrl}
x & =0.22-L \\
& & T & =-\frac{\lambda}{L} x \\
& \therefore & -17 & =-\frac{51}{L}(0.22-L) \\
\Rightarrow & L & =3(0.22-L) \\
\Rightarrow & L & =0.66-3 L \\
\Rightarrow & 4 L & =0.66 \\
\Rightarrow & & L & =0.165 \mathrm{~m}
\end{array}
$$

Example 5

A light, elastic string of natural length 85 cm has one end fixed with a mass of eight thousand grams freely suspended from the other end.

Show that, if the total length of the string in the equilibrium position is 1.25 m , the modulus of elasticity of the string is 17 g N .

In equilibrium, the restoring force is balanced by the weight. So,

$$
\left.\begin{array}{rlrl}
& & T & =W \\
& \therefore & -\frac{\lambda}{L} x & =m g \\
\Rightarrow & & \lambda & =-\frac{m g L}{x} \\
& \therefore & \lambda & =-\frac{8(0.85) g}{-0.4} \\
& \Rightarrow & & \lambda
\end{array}\right)=17 g
$$

Example 6

A light, elastic spring has its upper end D fixed and a body of mass 0.6 kg attached to its other end E. If the modulus of the spring is $9 \mathrm{~g} / 2 \mathrm{~N}$ and its natural length is 1.5 m , find the extension e of the spring when the body hangs in equilibrium.

The end E of the spring is pulled vertically downwards to F, where $E F=10 \mathrm{~cm}$. Find the initial acceleration of the body when released from position F.

In equilibrium, the restoring force is balanced by the weight. So,

$$
\begin{aligned}
& \mathrm{T}=\mathrm{W} \\
& \therefore \quad-\frac{\lambda}{L} e=m g \\
& \Rightarrow \quad e=-\frac{m g L}{\lambda} \\
& \therefore \quad e=-\frac{(0.6)(1.5) g}{9 g / 2} \\
& \Rightarrow \quad e=-0.2
\end{aligned}
$$

Extension is 0.2 m downwards

When released from position F, the net force is upwards. So,

$$
\begin{array}{rlrl}
& & F_{\text {Net }}=T-W \\
\therefore & & m a=-\frac{\lambda}{L} \times-m g \\
\therefore & 0.6 a=-\frac{(4.5)(9.8)}{1.5}(-0.3)-0.6(9.8) \\
\Rightarrow & 0.6 a=8.82-5.88 \\
\Rightarrow & 0.6 a=2.94 \\
\Rightarrow & & a=4.9 \mathrm{~ms}^{-2} \\
& & & \text { Acceleration is } 4.9 \mathrm{~ms}^{-2} \text { upwards }
\end{array}
$$

Example 7

A body lies on a smooth, horizontal surface and is connected to a point O on the surface by a light, elastic string of natural length 50 cm and modulus 70 N . When the body moves in a horizontal circular path about O with a constant speed of $3.5 \mathrm{~m} \mathrm{~s}^{-1}$, the extension in the string is 20 cm .

Determine the mass m of the body.

Net force $F_{\text {net }}$ is inwards

Equating vertically gives $R=W=m g$, which doesn't reveal anything. Horizontally, the central force is provided by the string's tension. So,

$$
\begin{aligned}
& -\frac{m v^{2}}{r}=-\frac{\lambda}{L} x \\
& \Rightarrow \quad m=\frac{\lambda \times r}{L v^{2}} \\
& \therefore \quad m=\frac{70(0.2)(0.7)}{(0.5)(3.5)^{2}} \\
& \Rightarrow \quad \mathrm{~m}=1.6 \mathrm{~kg}
\end{aligned}
$$

Example 8

A rough disc rotates in a horizontal plane with a constant angular velocity ω rad s^{-1} about a fixed vertical axis through the centre O of the disc. A particle of mass m kg lies at a point P on the disc and is attached to the axis by a light, elastic string OP of natural length $L \mathrm{~m}$ and elastic modulus 3 mg N . The particle is at a distance of $5 \mathrm{~L} / 4 \mathrm{~m}$ from O and the coefficient of static friction between P and the disc is $2 / 7$.

Find the range of values of ω (in terms of g and L) for which the particle remains stationary on the disc.

There is a range of values for ω as there are two cases to consider : motion to just prevent slipping outwards and motion to just prevent being pulled in towards the centre.
$\underline{\text { Preventing slipping out : }}$

The vertical forces are balanced $(R=W=m g)$ and the centripetal force is provided by the restoring force T and F_{s}. To be clear, write the forces, with the above directions, as,

$$
\begin{aligned}
& \underline{\mathbf{F}}_{c}=-m \mathbf{r} \omega^{2} \underline{\mathbf{i}} \\
& \underline{\mathbf{T}}=\mathbf{T} \underline{\mathbf{i}}=-\frac{\lambda}{L} \times \underline{\mathbf{i}} \\
& \underline{\mathbf{F}}_{s}=-\mathrm{F}_{\mathrm{s}} \underline{\mathbf{i}}
\end{aligned}
$$

Then,

$$
\begin{array}{rlrl}
& \underline{\underline{F}}_{c}=\underline{\mathbf{T}}+\underline{\boldsymbol{F}}_{s} \\
\therefore & -m r \omega^{2} \underline{\mathbf{i}} & =-\frac{\lambda}{L} \times \underline{\mathbf{i}}-\mathrm{F}_{s} \underline{\mathbf{i}} \\
\Rightarrow & m r \omega^{2} & =\frac{\lambda}{L} x+F_{s} \\
\Rightarrow & m r \omega^{2} & \leq \frac{\lambda}{L} x+\mu_{s} m g \\
\therefore & \frac{5 m L}{4} \omega^{2} \leq \frac{3 m g L}{4 L}+\frac{2 m g}{7} \\
\Rightarrow & \frac{5 L}{4} \omega^{2} \leq \frac{3 g}{4}+\frac{2 g}{7} \\
\Rightarrow & \frac{5 L}{4} \omega^{2} \leq \frac{29 g}{28} \\
\Rightarrow & \omega \leq \sqrt{\frac{29 g}{35 L}}
\end{array}
$$

Preventing pulling in:

This time, the friction force is outwards. So, $\underline{F}_{s}=F_{s} \underline{i}$. Thus,

$$
\begin{array}{ccc}
& m r \omega^{2}=\frac{\lambda}{L} x-F_{s} \\
\Rightarrow & m r \omega^{2} \geq \frac{\lambda}{L} x-\mu_{s} m g \\
\therefore & \frac{5 m L}{4} \omega^{2} \geq \frac{3 m g L}{4 L}-\frac{2 m g}{7} \\
\Rightarrow & \frac{5 L}{4} \omega^{2} \geq \frac{3 g}{4}-\frac{2 g}{7} \\
\Rightarrow & \frac{5 L}{4} \omega^{2} \geq \frac{13 g}{28} \\
\Rightarrow & \omega & \geq \sqrt{\frac{13 g}{35 L}}
\end{array}
$$

So, required range of values for ω is,

$$
\sqrt{\frac{13 g}{35 L}} \leq \omega \leq \sqrt{\frac{29 g}{35 L}}
$$

Blue Book
 -pg. 363-4 Ex. 15 A Q 1 -12, 14, 17, 18 and 20.

