$10 / 7 / 17$

Force, Energy and Periodic Motion - Lesson 4

The Conical Pendulum

LI

- Derive the equations for a Conical Pendulum.
- Solve problems involving a Conical Pendulum.

SC

- Free-body diagrams (FBDs).
- Central force equation.

A Conical Pendulum is a point mass (moving under gravity), suspended by a light, inextensible string from a point O, where the mass moves in a horizontal circle with centre directly beneath 0
'Light' means negligible mass compared to the point mass: 'inextensible' means the string does not stretch.

The term 'conical' arises from the fact that the horizontal circle and the string trace out a cone shape after one revolution

In a conical pendulum, there are always two forces that act on the point mass (aka bob) : string tension and gravity.

The horizontal component of the string tension provides the centripetal force that causes the bob to move in a horizontal circle.

All Vertical Forces
All Horizontal Forces

Remembering that $W=m g$ and $F_{c}=\frac{m v^{2}}{r}$,

$$
\begin{aligned}
T \sin \theta & =\frac{m v^{2}}{r} \\
T \cos \theta & =m g
\end{aligned}
$$

The above two equations with some basic geometry and some equations for circular motion, are used to work out various quantities and relationships for a conical pendulum.

Many equations can be obtained connecting the quantities T, v, m, $g, \theta, r, h, L, \omega, f$ (frequency) and P (period). Usually, ' T ' is used for period, but we have here used it to denote tension.

The equations on the following two pages are not to be memorised; rather, they illustrate the types of equations that are obtained by analysing the FBD of a conical pendulum for any given question.

Tension equations

Using the first equation and $r=L \sin \theta$,

$$
\begin{array}{rlrl}
& \frac{T r}{L} & =\frac{m v^{2}}{r} \\
\Rightarrow \quad T & =\frac{L m v^{2}}{r^{2}}=L m \omega^{2}
\end{array}
$$

where the relation $v=\omega r$ has been used.

Angle equations

Dividing the first equation by the second gives,

$$
\tan \theta=\frac{v^{2}}{g r}=\frac{r \omega^{2}}{g}
$$

Period equations

Using $P=2 \pi / \omega$ and $v=\omega r$,

$$
\begin{aligned}
& P=\frac{2 \pi}{\omega} \\
\Rightarrow & P
\end{aligned}
$$

From the first angle equation $v^{2}=g r \tan \theta$, this gives, upon simplification,

$$
P=2 \pi \sqrt{\frac{r}{g \tan \theta}}
$$

Example 1

A bob of mass 2 kg is attached to one end of a light, inextensible string, the other end being attached to a fixed point P.

If the bob moves in a horizontal circle of radius 30 cm with centre vertically below P, and the angle the string makes with the vertical from P is 25°, find the tension in the string, the angular velocity of the bob and the period of the bob.

All Vertical Forces

All Horizontal Forces

Equating vertical components gives,

$$
\begin{array}{rlrl}
& & \mathrm{T} \cos 25^{\circ} & =\mathrm{mg} \\
\Rightarrow & & \mathrm{~T}=2(9.8) / \cos 25^{\circ} \\
\Rightarrow & \mathrm{T}=21.62 \ldots \\
\therefore & & \mathrm{~T}=21.6 \mathrm{~N} \text { (1 d.p.) }
\end{array}
$$

The centripetal force is provided by the horizontal component of tension. So,

$$
\begin{aligned}
& T \sin 25^{\circ}=m r \omega^{2} \\
& \Rightarrow \quad \omega^{2}=(21.62 \ldots)\left(\sin 25^{\circ}\right) /(2 \times 0.3) \\
& \Rightarrow \quad \omega^{2}=15.23 \ldots \\
& \therefore \quad \omega=3.9 \mathrm{rads}^{-1} \text { (1d.p.) }
\end{aligned}
$$

The period is,

$$
\begin{aligned}
& & P=\frac{2 \pi}{\omega} \\
\Rightarrow & P & =\frac{2 \pi}{3.9 \ldots} \\
\Rightarrow & P & =1.60 \ldots \\
\therefore & P & =1.6 s(1 \text { d.p. }
\end{aligned}
$$

Example 2

A light, inextensible string of length 2 m is fixed at a point A and has the other end attached to an object of mass 3 kg .
The mass rotates in a horizontal circle whose centre is one metre vertically below A.

Show that the angular velocity of the mass is $\sqrt{9}$ and the string tension is 6 g .

All Vertical Forces

All Horizontal Forces

The right-angled triangle for length gives,

$$
\begin{aligned}
& \sin \theta=\frac{\sqrt{3}}{2} \\
& \cos \theta=\frac{1}{2}
\end{aligned}
$$

Equating vertically gives,

$$
\begin{aligned}
& & \mathrm{T} \cos \theta & =\mathrm{mg} \\
& \therefore & \mathrm{~T}(1 / 2) & =3 \mathrm{~g} \\
\Rightarrow & & T & =6 \mathrm{~g}
\end{aligned}
$$

Net horizontal force is,

$$
\begin{aligned}
& m r \omega^{2}=T \sin \theta \\
& \therefore \quad 3 \sqrt{3} \omega^{2}=6 g(\sqrt{3} / 2) \\
& \Rightarrow \quad 3 \omega^{2}=3 g \\
& \Rightarrow \quad \omega=\sqrt{g}
\end{aligned}
$$

Example 3

A particle of mass M is attached to one end of a light, inextensible string of length L, the other end of which is fastened to a fixed point. The particle is made to describe circles of fixed radius r at a constant speed v.

Show that $g^{2} r^{4}=v^{4}\left(L^{2}-r^{2}\right)$.

All Vertical Forces
All Horizontal Forces

The right-angled triangle for length gives,

$$
\begin{aligned}
& \sin \theta=\frac{r}{L} \\
& \cos \theta=\frac{\sqrt{L^{2}-r^{2}}}{L} \\
& \tan \theta=\frac{r}{\sqrt{L^{2}-r^{2}}}
\end{aligned}
$$

We have,

$$
\begin{aligned}
\mathrm{T} \sin \theta & =\frac{m v^{2}}{r} \\
\mathrm{~T} \cos \theta & =m g \\
\therefore \quad \tan \theta & =\frac{v^{2}}{g r}
\end{aligned}
$$

Equating this expression for $\tan \theta$ with the one obtained on the previous page gives,

$$
\begin{array}{rlrl}
& & \frac{r}{\sqrt{L^{2}-r^{2}}} & =\frac{v^{2}}{g r} \\
\Rightarrow & & g r^{2}=v^{2} \sqrt{L^{2}-r^{2}} \\
\Rightarrow & & g^{2} r^{4}=v^{4}\left(L^{2}-r^{2}\right)
\end{array}
$$

Example 4

A particle of mass m, attached to the end A of a light, inextensible string describes a horizontal circle (with the string taut) on a smooth horizontal plane. The other end of the string is at a fixed height L above the centre of the horizontal circle.

If the angular velocity of the particle is ω, and the string has length $2 L$, find the tension in the string and the reaction between the particle and the plane.

All Vertical Forces
$T \cos \theta$

The right-angled triangle for length gives,

$$
\begin{aligned}
& \sin \theta=\frac{\sqrt{3}}{2} \\
& \cos \theta=\frac{1}{2}
\end{aligned}
$$

Net horizontal force is,

$$
\begin{array}{rlrl}
& & T \sin \theta & =m r \omega^{2} \\
\therefore & T(\sqrt{3} / 2) & =m L \sqrt{3} \omega^{2} \\
\Rightarrow & & T & =2 m L \omega^{2}
\end{array}
$$

Equating vertically gives,

$$
\begin{array}{rlrl}
& R+T \cos \theta & =m g \\
& \therefore & R+2 m L \omega^{2}(1 / 2) & =m g \\
\Rightarrow & R & =m g-m L \omega^{2}
\end{array}
$$

Example 5

A light, inextensible string $A B$ of length $2 L$ has a particle attached to its midpoint C. The ends A and B of the string are fastened to two fixed points with A distance L vertically above B. With both parts of the string taut, the particle describes a horizontal circle about the line $A B$ with constant angular speed w.

If the tension in CA is four times that in $C B$, show that $\omega=\sqrt{\frac{10 g}{3 L}}$.

The particle is being made to move in a horizontal circle by effectively two strings $C A$ and $C B$:

As the tension in T_{1} is four times that in T_{2}, we let $T=T_{2}$. Then $T_{1}=4 \mathrm{~T}$.

All Vertical Forces

All Horizontal Forces

The right-angled triangle for length gives,

$$
\begin{aligned}
& \sin \theta=\frac{\sqrt{3}}{2} \\
& \cos \theta=\frac{1}{2} \\
& \tan \theta=\sqrt{3}
\end{aligned}
$$

Net horizontal force is,

$$
\begin{aligned}
& & 4 T \sin \theta+T \sin \theta & =m r \omega^{2} \\
\Rightarrow & & 5 T \sin \theta & =m r \omega^{2}
\end{aligned}
$$

Equating vertically gives,

$$
\begin{aligned}
& 4 \mathrm{~T} \cos \theta=m g+T \cos \theta \\
\Rightarrow & 3 T \cos \theta=m g
\end{aligned}
$$

Dividing these equations gives,

$$
\begin{aligned}
& & \frac{5 \tan \theta}{3} & =\frac{r \omega^{2}}{9} \\
& \therefore & \frac{5 \sqrt{3}}{3} & =\frac{L \sqrt{3} \omega^{2}}{2 g} \\
\Rightarrow & & \omega & =\sqrt{\frac{10 g}{3 L}}
\end{aligned}
$$

Blue Book

- pg. 320-323 Ex. 13 C Q 1, 7, 8, 16, 17, 20, 23, 24.

