10 / 1 / 18

Unit 1 : Differential Calculus - Lesson 11

Related Rates

LI

• Work out related rates using a function.

<u>SC</u>

- Chain Rule.
- Implicit differentiation.

Related rates are rates of change (i.e. derivatives) that are connected by an equation

The connecting equation is differentiated and the Chain Rule is always used

If y is a function of u, and u is a function of x, then the Chain Rule is,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

If y is a function of u, u is a function of w, and w is a function of x, then the Chain Rule is,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dw} \times \frac{dw}{dx}$$

Example 1

A large spherical balloon is being deflated at a constant rate of 200 cm 3 s $^{-1}$. If the balloon maintains its spherical shape during deflation, find how fast the radius is decreasing when the radius is 2 cm.

The volume V depends on the radius r and the radius changes with time t. So, the Chain Rule is,

$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$

$$V = (4/3) \pi r^{3}$$

$$\frac{dV}{dr} = 4 \pi r^{2}$$

$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$

$$\Rightarrow -200 = 4 \pi r^{2} \frac{dr}{dt}$$

$$\therefore \left(\frac{dr}{dt}\right)_{r=2} = -\frac{50}{\pi (2)^2}$$

$$\Rightarrow \left(\frac{dr}{dt}\right)_{r=2} = -\frac{25}{2\pi} \text{ cm s}^{-1}$$

 $\frac{dr}{dt} = -\frac{50}{-x^2}$

Example 2

A particle is moving in a circle with centre the origin of the x-y plane and radius 5 m. When the particle is at the point (4, 3), the rate of change of the \times - coordinate is 21 m s^{-1} .

Find the rate of change of the y - coordinate.

$$x^2 + y^2 = 25$$

Differentiating this equation implicitly gives,

$$2 \times \frac{dx}{dt} + 2 y \frac{dy}{dt} = 0$$

$$\therefore 2 (4) (21) + 2 (3) \frac{dy}{dt} = 0$$

$$\Rightarrow 84 + 3 \frac{dy}{dt} = 0$$

$$\Rightarrow \frac{dy}{dt} = -28 \text{ m s}^{-1}$$

AH Maths - MiA (2nd Edn.)

pg. 196-9 Ex. 11.3
 Q 2, 6, 9, 10, 13.

Ex. 11.3

- An oil spillage is spreading out on the garage floor. It is circular in shape and its radius is expanding at the rate of 3 cms⁻¹. How fast is the area growing when the radius is 50 cm?
- 6 A metal cube of edges x cm is heated. Each edge expands by 0.003 cmmin⁻¹.
 - a i Express the volume $V \text{ cm}^3$ as a function of x.
 - ii Find an expression for the rate of change of volume with respect to edge length.
 - b Find the rate at which the volume is expanding with respect to time when the edge is 6 cm long.
- 9 According to Boyle's law the volume, V m³, of a fixed mass of gas is inversely proportional to the pressure, P Nm⁻², of the gas.
 In one particular case this leads to the relationship DV = 500.

In one particular case this leads to the relationship PV = 500.

The rate of change of the volume of the gas has been measured as 15 m³s⁻¹.

Find the rate of change of pressure with respect to time when the volume of the gas is 50 m³.

- Climbing a mountain under ideal conditions, the temperature drops at the rate of 9.8 °C per 1000 m. A climber models his ascent on the equation $h = 5t^2 + 150t$ where h is his height in metres and t is the time in hours.
 - a Find $\frac{dT}{dt}$ in degrees Celsius per minute.
 - b At what rate, in degrees Celsius per minute, does he experience the temperature dropping two hours into his ascent?
- 13 A set of stepladders is represented by an isosceles triangle whose equal sides are of length 2 m.

The feet of these lengths are D m apart, and held in place by a rope.

The rope snaps and the feet move apart. D increases by 20 cms⁻¹.

The apex angle is θ radians and its height at time t seconds is h metres.

- a Express θ explicitly as a function of D.
- b When the feet are 2.4 m apart, calculate the rate at which the angle is opening

i in radians per second ii in degrees per second.

c Calculate the rate at which the height, h metres, is decreasing when the feet are 3.3 m apart. Express your answer in cms⁻¹.

Answers to AH Maths (MiA), pg. 196-9, Ex. 11.3

$$2 300\pi \text{ cm}^2/\text{s}$$

6 a i
$$V = (x + 0.003)^3$$

ii $\frac{dV}{dx} = 3(x + 0.003)^2$

b 0.324 cm³/min

9 -3 newton/m² per second.

10 a
$$\frac{dT}{dh} = -\left(\frac{9.8}{1000}\right) ^{\circ}C/m \Rightarrow$$

$$\frac{dT}{dt} = -\left(\frac{9.8}{1000}\right)(10t + 150) ^{\circ}C/hour$$

$$= -\left(\frac{9.8}{60000}\right)(10t + 150) ^{\circ}C/min$$
[t measured in hours]

b
$$-\left(\frac{9.8}{60\,000}\right)(20+150) = -0.0278 \, ^{\circ}\text{C/min}$$

13 a
$$\theta = 2 \sin^{-1}\left(\frac{D}{4}\right)$$

b i 0.125 radians per sec ii 7.16°/sec

c 14.6 cm/sec