$10 / 1 / 18$

Unit 1 : Differential Calculus - Lesson 11

Related Rates

LI

- Work out related rates using a function.

SC

- Chain Rule.
- Implicit differentiation.

Related rates are rates of change (i.e. derivatives) that are connected by an equation

The connecting equation is differentiated and the Chain Rule is always used

If y is a function of u, and u is a function of x, then the Chain Rule is,

$$
\frac{d y}{d x}=\frac{d y}{d u} x \frac{d u}{d x}
$$

If y is a function of u, u is a function of w, and w is a function of x, then the Chain Rule is,

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d w} \times \frac{d w}{d x}
$$

Example 1

A large spherical balloon is being deflated at a constant rate of $200 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. If the balloon maintains its spherical shape during deflation, find how fast the radius is decreasing when the radius is 2 cm .

The volume V depends on the radius r and the radius changes with time t. So, the Chain Rule is,

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d V}{d r} \times \frac{d r}{d t} \\
V & =(4 / 3) \pi r^{3} \\
\therefore \quad \frac{d V}{d r} & =4 \pi r^{2} \\
\frac{d V}{d t} & =\frac{d V}{d r} \times \frac{d r}{d t} \\
\Rightarrow \quad-200 & =4 \pi r^{2} \frac{d r}{d t} \\
\Rightarrow \quad \frac{d r}{d t} & =-\frac{50}{\pi r^{2}} \\
\therefore \quad\left(\frac{d r}{d t}\right)_{r=2} & =-\frac{50}{\pi(2)^{2}} \\
\Rightarrow \quad\left(\frac{d r}{d t}\right)_{r=2} & =-\frac{25}{2 \pi} \mathrm{~cm} \mathrm{~s}^{-1}
\end{aligned}
$$

Example 2

A particle is moving in a circle with centre the origin of the $x-y$ plane and radius 5 m . When the particle is at the point $(4,3)$, the rate of change of the x-coordinate is $21 \mathrm{~m} \mathrm{~s}^{-1}$.

Find the rate of change of the y-coordinate.

$$
x^{2}+y^{2}=25
$$

Differentiating this equation implicitly gives,

$$
\begin{array}{rlrl}
& & 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}= & 0 \\
\therefore & 2(4)(21)+2(3) \frac{d y}{d t}=0 \\
\Rightarrow & & 84+3 \frac{d y}{d t}=0 \\
\Rightarrow & & \frac{d y}{d t}=-28 \mathrm{~ms}^{-1}
\end{array}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 196-9 Ex. 11.3

Q 2, 6, 9, 10, 13.

Ex. 11.3

2 An oil spillage is spreading out on the garage floor. It is circular in shape and its radius is expanding at the rate of $3 \mathrm{cms}^{-1}$.
How fast is the area growing when the radius is 50 cm ?
6 A metal cube of edges $x \mathrm{~cm}$ is heated. Each edge expands by $0.003 \mathrm{cmmin}^{-1}$.
a i Express the volume $V \mathrm{~cm}^{3}$ as a function of x.
ii Find an expression for the rate of change of volume with respect to edge length.
b Find the rate at which the volume is expanding with respect to time when the edge is 6 cm long.
9 According to Boyle's law the volume, $V \mathrm{~m}^{3}$, of a fixed mass of gas is inversely proportional to the pressure, $P \mathrm{Nm}^{-2}$, of the gas.
In one particular case this leads to the relationship $P V=500$.
The rate of change of the volume of the gas has been measured as $15 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.
Find the rate of change of pressure with respect to time when the volume of the gas is $50 \mathrm{~m}^{3}$.
10 Climbing a mountain under ideal conditions, the temperature drops at the rate of $9.8^{\circ} \mathrm{C}$ per 1000 m .
A climber models his ascent on the equation $b=5 t^{2}+150 t$ where b is his height in metres and t is the time in hours.
a Find $\frac{\mathrm{d} T}{\mathrm{~d} t}$ in degrees Celsius per minute.
b At what rate, in degrees Celsius per minute, does he experience the temperature dropping two hours into his ascent?

13 A set of stepladders is represented by an isosceles triangle whose equal sides are of length 2 m .
The feet of these lengths are $D \mathrm{~m}$ apart, and held in place by a rope.
The rope snaps and the feet move apart. D increases by $20 \mathrm{cms}^{-1}$.
The apex angle is θ radians and its height at time t seconds is h metres.
a Express θ explicitly as a function of D.
b When the feet are 2.4 m apart, calculate the rate at which the angle is opening $*----\quad D \mathrm{~m}$ i in radians per second ii in degrees per second.
c Calculate the rate at which the height, h metres, is decreasing when the feet are 3.3 m apart. Express your answer in cms^{-1}.

Answers to AH Maths (MiA), pg. 196-9, Ex. 11.3
$2300 \pi \mathrm{~cm}^{2} / \mathrm{s}$

$$
\begin{aligned}
6 \text { a } & \text { i } \quad V=(x+0.003)^{3} \\
& \text { ii } \frac{d V}{d x}=3(x+0.003)^{2}
\end{aligned}
$$

b $0.324 \mathrm{~cm}^{3} / \mathrm{min}$
$9-3$ newton $/ \mathrm{m}^{2}$ per second.
10 a $\frac{\mathrm{d} T}{\mathrm{~d} b}=-\left(\frac{9.8}{1000}\right)^{\circ} \mathrm{C} / \mathrm{m} \Rightarrow$

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=-\left(\frac{9.8}{1000}\right)(10 t+150)^{\circ} \mathrm{C} / \text { hour }
$$

$=-\left(\frac{9.8}{60000}\right)(10 t+150)^{\circ} \mathrm{C} / \mathrm{min}$ [t measured in hours]
b $\quad-\left(\frac{9.8}{60000}\right)(20+150)=-0.0278{ }^{\circ} \mathrm{C} / \mathrm{min}$
13 a $\quad \theta=2 \sin ^{-1}\left(\frac{D}{4}\right)$
b i 0.125 radians persec ii $7.16^{\circ} / \mathrm{sec}$
c $\quad 14.6 \mathrm{~cm} / \mathrm{sec}$

