$9 / 1 / 18$

Unit 1 : Differential Calculus - Lesson 10

Planar Motion

LI

- Work out kinematical quantities.

SC

- Vectors.
- Parametric differentiation.

The velocity (denoted by $\underline{\boldsymbol{v}}$) of a particle is the time-derivative of the particle's displacement:

$$
\underline{\mathbf{v}}=\frac{\mathrm{d} \underline{\mathbf{s}}}{\mathrm{~d} t}=\underline{\mathbf{s}}
$$

Direction that $\underline{v}(\dagger)$ makes with the positive x - axis (aka direction of motion)

Speed is the magnitude of velocity:

$$
v(t)=|\underline{v}(t)|=\sqrt{\dot{x}^{2}+\dot{y}^{2}}
$$

The acceleration (denoted by \mathbf{a}) of a particle is the time-derivative of the particle's velocity :

$$
\underline{\mathbf{a}}=\frac{\mathrm{d} \underline{\mathbf{v}}}{\mathrm{~d} t}=\underline{\dot{\mathbf{v}}}
$$

Magnitude of acceleration:
$a(t)=|\underline{a}(t)|=\sqrt{\ddot{x}^{2}+\ddot{y}^{2}}$

Unless otherwise stated, the following units are assumed :

- Displacement - metres (m).
- Velocity - metres per second ($\mathrm{m} \mathrm{s}^{-1}$).
- Acceleration - metres per second squared ($\mathrm{m} \mathrm{s}^{-2}$).

$$
\underline{\underline{s}}(t) \xrightarrow{\frac{d}{d t}} \underline{v}(t) \xrightarrow{\frac{d}{d t}} \underline{a}(t)
$$

$$
\begin{aligned}
& \text { Useful Terminology } \\
& \text { Constant - unchanging } \\
& \text { At rest - velocity }=0 \\
& \text { Initially - time starts at } 0 \\
& \text { At origin - displacement }=0
\end{aligned}
$$

Unless otherwise stated, a particle will be assumed to commence its motion from the origin at $t=0$

Example 1

The equations of motion of a particle moving in a plane are,

$$
x(t)=t^{3}-3 t, y(t)=t^{2}+t
$$

Find the displacement of the particle after 2 seconds and also the magnitude and direction of its velocity after 3 seconds.

$$
\begin{array}{ll}
& \underline{\mathbf{s}}(t)=\binom{x(t)}{y(t)} \\
\therefore & \underline{\mathbf{s}}(t)=\binom{t^{3}-3 t}{t^{2}+t} \\
\therefore & \underline{\mathbf{s}}(2)=\binom{2^{3}-3(2)}{2^{2}+2} \\
\Rightarrow & \underline{\mathbf{s}}(2)=\binom{2}{6} \\
\therefore & x(t)=t^{3}-3 t, y(t)=t^{2}+t \\
\therefore & \dot{x}(t)=3 t^{2}-3, \dot{y}(t)=2 t+1
\end{array}
$$

$$
\begin{aligned}
& \underline{v}(t)=\binom{\dot{x}(t)}{\dot{y}(t)} \\
& \therefore \quad \underline{v}(t)=\binom{3 t^{2}-3}{2 t+1} \\
& \therefore \quad \underline{v}(3)=\binom{3(3)^{2}-3}{2(3)+1} \\
& \Rightarrow \quad \underline{\mathbf{v}}(3)=\binom{24}{7} \\
& \therefore \quad v(3)=\sqrt{24^{2}+7^{2}} \\
& \Rightarrow \quad v(3)=25 \mathrm{~m} \mathrm{~s}^{-1} \\
& \tan \theta=\frac{\dot{y}(3)}{\dot{x}(3)} \\
& \therefore \quad \tan \theta=7 / 24 \\
& \Rightarrow \quad R A=16.3^{\circ} \\
& \therefore \quad \theta=16.3^{\circ}
\end{aligned}
$$

Example 2

The equations of motion of a particle moving in a plane are,

$$
x(t)=\sin 2 t, y(t)=\cos 2 t
$$

Show that the magnitude of the acceleration of the particle is constant.

$$
\begin{array}{ll}
& x(t)=\sin 2 t, y(t)=\cos 2 t \\
\therefore & \underline{x}(t)=2 \cos 2 t, \dot{y}(t)=-2 \sin 2 t \\
\Rightarrow & \ddot{x}(t)=-4 \sin 2 t, \ddot{y}(t)=-4 \cos 2 t \\
& \underline{\mathbf{a}(t)=\ddot{x}(t) \underline{i}+\ddot{y}(t) \dot{j}} \begin{array}{ll}
\therefore & \underline{a}(t)=(-4 \sin 2 t) \underline{i}+(-4 \cos 2 t) \dot{j} \\
\therefore & |\underline{a}(t)|=\sqrt{(-4 \sin 2 t)^{2}+(-4 \cos 2 t)^{2}} \\
\Rightarrow & |\underline{a}(t)|=\sqrt{16 \sin ^{2} 2 t+16 \cos ^{2} 2 t} \\
\Rightarrow & |\underline{a}(t)|=\sqrt{16\left(\sin ^{2} 2 t+\cos ^{2} 2 t\right)} \\
\Rightarrow & |\underline{a}(t)|=\sqrt{16(1)} \\
\Rightarrow & |\underline{a}(t)|=4 m s^{-2} \Rightarrow|\underline{a}(t)| \text { is constant }
\end{array}
\end{array}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 193-4 Ex. 11.2

Q 1, 3, 6, 8, 9,10 a, b.

Ex. 11.2

- t represents time in seconds; x and y are distances in metres.
- Work in radian measure when dealing with trigonometric functions.
- Work to 3 significant figures where appropriate.

1 A particle moves in a plane according to the parametric equations $x=\frac{t^{3}}{\pi}+\sin t, y=t^{2}-\cos t$.
a Find the speed of the particle, and the direction of motion, when $t=\pi$.
b Find the magnitude of the acceleration at the same time.
3 A particle moves in a plane according to the equations $x=\ln (t+2)-0.69, y=\ln (t+3)+1$
a i Use the chain rule to establish an expression in t for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
ii Hence show that when $t>0, \frac{\mathrm{~d} y}{\mathrm{~d} x}>0$, and so the displacement is always increasing.
b How far did the particle travel between the first and fourth seconds?
c Find the magnitude and direction of the velocity at the first second.
d Find the magnitude and direction of the acceleration initially.
6 The London Eye is a tourist attraction on the banks of the Thames.
It is a ferris wheel that travels slow enough to allow people to step on and off without it stopping. The movement of a point on the circumference can be modelled by
$x=65 \cos \left(\frac{\pi t}{15}-\frac{\pi}{2}\right), y=65 \sin \left(\frac{\pi t}{15}-\frac{\pi}{2}\right)+70$
where t is the number of minutes since the point was last at the bottom of the wheel.
a How high above the ground is the bottom of the wheel?
[That is, what is y when $x=0$?]
b How long does it take to make a complete revolution?
c i Show that its speed is a constant (that is, independent of t) and give its value.
ii Describe its velocity after 10 min .
d Describe its acceleration after 15 min .
8 The velocity of a particle can be modelled by $\dot{x}=\frac{e^{t}-e^{-t}}{2}, \dot{y}=\frac{e^{t}+e^{-t}}{2}$.
a i Find parametric equations to give the position at time t.
ii Find the position of the particle initially if the constants generated by integration are both zero.
b Express, in terms of $e^{2 t}$,
i the speed
ii the tangent of the angle that the direction of motion makes with the x-direction.
c Find the acceleration when $t=5$.
9 On 14th February, a laser light was made to play on a wall tracing out a design by following the equations of motion $x=\cos ^{3} t, y=\sin t-\sin ^{2} t$ where t is the time in tenths of a second and x and y are measured in metres.
a What is the position of the starting point?
b Calculate the velocity when $t=10$.

10 A particle's motion is described by $x=1+\cos t-\sin t, y=1-\cos t+\sin t$.
a Show that at all times t, the direction of the velocity and that of the acceleration are the same.
b Show that $|v(t)|^{2}+|a(t)|^{2}=4 \forall t$.

1 a Speed $10.5 \mathrm{~m} / \mathrm{s}$ direction 0.641 radians to x-direction
b $\sqrt{37}$
3 a i $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{t+2}{t+3} \quad$ ii $t>0 \Rightarrow \frac{d y}{d x}>0$
b $\quad 0.724 \mathrm{~m}$
c $\quad|v(1)|=0.417 \mathrm{~ms}^{-1} ; 0.644$ radians
d $\quad|a(0)|=0.274 \mathrm{~ms}^{-1} ; 3.560$ radians
6 a 5 m
b 30 min
c \quad i $|v|=\sqrt{\left(\frac{65 \pi}{15}\right)^{2}\left[\sin ^{2}\left(\frac{\pi t}{15}-\frac{\pi}{2}\right)+\cos ^{2}\left(\frac{\pi t}{15}-\frac{\pi}{2}\right)\right]}$

$$
=\frac{65 \pi}{15} \approx 13.6 \mathrm{~m} / \mathrm{min}
$$

$$
\text { ii } \quad v(10)=\binom{-6.81}{11.8} ; \text { mag } 13.6 \mathrm{~ms}^{-1} \text {, dirn } 2.09 \text { radians }
$$

d Magnitude $2.85 \mathrm{~ms}^{-2}$; direction 4.71 radians
8 a i $\quad x=\frac{e^{t}+e^{-t}}{2}+c_{1} ; y=\frac{e^{t}-e^{-t}}{2}+c_{2} \quad$ ii $(1,0)$
b i $\sqrt{\frac{e^{2 t}+e^{-2 t}}{2}}$ ii $\frac{e^{2 t}+1}{e^{2 t}-1}$
c $\quad\binom{74.2}{74.2}$
9 a $(1,0)$
b $\binom{1.15}{-1.75}$
10 a In both cases the angle is $\tan ^{-1}(-1)$ and in same quadrant.
b Expand both and use $\sin ^{2} t+\cos ^{2} t=1$

