Force, Energy and Periodic Motion - Lesson 2

Centripetal Motion and Friction

LI

- Solve problems involving Centripetal Force and Friction. SC
- Equations of circular motion.
- Equations of friction.

Definition:

A centripetal force is a force that tends to make a body follow a curved path.
Centripetal force is usually applied to circular motion.
Centripetal force is not a special new type of force; it's just like ' $m a$ ', the net force, but applied to circular motion.

Using Newton's $2^{\text {nd }}$ Law $\underline{F}=m \underline{a}$ together with the acceleration of an object in circular motion $\underline{\boldsymbol{a}}=-\omega^{2} r \underline{\boldsymbol{e}}_{r}$, and denoting the centripetal force by \underline{E}_{c}, we have,

$$
\underline{\boldsymbol{F}}_{c}=-m \omega^{2} r \underline{\boldsymbol{e}}_{r}=-\frac{m v^{2}}{r} \underline{\boldsymbol{e}}_{r}
$$

In magnitude form,

$$
F_{c}=m w^{2} r=\frac{m v^{2}}{r}
$$

Example 1

A particle of mass 300 g is attached to one end of a light, inextensible string of length 40 cm , the other end of the string being fixed at O on a smooth horizontal surface.

If the particle moves in a circle, find the tension in the string when the particle has:
(a) speed $2 \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$.
(b) angular speed $5 \mathrm{rads}{ }^{-1}$.
'Smooth' means no friction.

Equating vertically gives $R=m g$; correct, but not particularly useful for calculating the tension (which is horizontal).

The net centripetal force is provided by the tension; so,

$$
-T=-F_{c}=-m \omega^{2} r=-\frac{m v^{2}}{r}
$$

(a) We have,

$$
\begin{array}{ll}
& \\
& T=\frac{m v^{2}}{r} \\
\therefore & T=\frac{(0.3)(2 \sqrt{2})^{2}}{0.4} \\
\Rightarrow & T=6 \mathrm{~N}
\end{array}
$$

(b) We have,

$$
\begin{array}{ll}
& \\
\therefore & T=m r \omega^{2} \\
\Rightarrow & T=(0.3)(0.4)(5)^{2} \\
& \\
& T=3 N
\end{array}
$$

Example 2

A tiny box is placed on the surface of a horizontal disc at a point 5 cm from the centre of the disc. The box is on the point of slipping when the disc rotates at $1.4 \mathrm{rev} \mathrm{s}^{-1}$.

Show that the coefficient of friction between the box and the surface of the disc is $\pi^{2} / 25$.

The box will tend to slide away from the 5 cm mark; hence, there is a static friction force acting inwards to prevent this.

Equating vertically gives $R=W=m g$. As the box is on the point of slipping (outwards), we also have $\left(F_{s}\right)_{\text {max }}=\mu_{5} R$. Hence,

$$
\begin{aligned}
R & =W=m g \\
\left(F_{s}\right)_{\text {max }} & =\mu_{s} R \\
\therefore \quad\left(F_{s}\right)_{\text {max }} & =\mu_{s} \mathrm{mg}
\end{aligned}
$$

The net (centripetal) force is supplied by static friction,

$$
\begin{aligned}
& & F_{c}=\left(F_{s}\right)_{\max } & =\mu_{s} m g \\
& \therefore & \mu_{s} m g & =m r \omega^{2} \\
\Rightarrow & & \mu_{s} & =r \omega^{2} / g
\end{aligned}
$$

We have, in SI units, $r=5 / 100 \mathrm{~m}=1 / 20 \mathrm{~m}, g=98 / 10 \mathrm{~m} \mathrm{~s}^{-2}$ $=49 / 5 \mathrm{~m} \mathrm{~s}^{-2}$ and $\omega=(14 / 10)(2 \pi) \mathrm{rads}^{-1}=14 \pi / 5 \mathrm{rads}^{-1}$.

$$
\begin{array}{ll}
\therefore & \mu_{s}=(1 / 20)\left(196 \pi^{2} / 25\right) /(49 / 5) \\
\Rightarrow & \mu_{s}=\pi^{2} / 25
\end{array}
$$

Example 3

A hollow circular cylinder of radius r rotates at ω about its axis of symmetry (which is vertical). A body of mass m rotates, without slipping, on the inner surface of the cylinder.

Given that the body is on the point of slipping down the cylinder, show that $g=\mu_{s} r \omega^{2}$.

The body is prevented from slipping down due to static friction (upwards). The centripetal force is provided by the reaction from the interior cylinder surface.

Equating vertically gives,

$$
\begin{array}{rlrl}
& & \mu_{s} R & =\left(F_{s}\right)_{\text {max }}=W=m g \\
\Rightarrow & & g=\mu_{s} R / m
\end{array}
$$

The net centripetal force is provided by the reaction force. So,

$$
\begin{array}{ll}
& \\
& R=F_{c}=m r \omega^{2} \\
\therefore & \\
\Rightarrow & g=\mu_{s}\left(m r \omega^{2}\right) / m \\
& g=\mu_{s} r \omega^{2}
\end{array}
$$

Blue Book

- pg. 313-315 Ex. 13 B Q $4-12,18,21$.

