23 / 8 / 17

Unit 1 : Differential Calculus - Lesson 9

Parametric Differentiation

LI

• Differentiate functions parametrically.

<u>SC</u>

• Formulae.

A curve y = f(x) is defined parametrically if x and y are written in terms of an independent variable called the parameter (usually denoted by t or θ). It often helps to think of the parameter as representing time.

The functions x (t) and y (t) are viewed as 2 functions of t and are called parametric functions or the parametric equations of the curve.

If the parameter can be eliminated, then an implicit equation (called the constraint equation) can be formed; this only contains x and y.

As an example, consider the parametric equations,

$$x(t) = 3 \cos t$$
, $y(t) = 3 \sin t$

Squaring, adding and simplifying gives (suppressing the dependence on the parameter t),

$$x^2 + y^2 = 9$$

This constraint equation describes a circle with centre the origin and radius 3. So, the parametric equations above for x (t) and y (t) describe this circle.

Each value of t gives a coordinate (x, y). So, varying t traces out a circle. Or, think of an object moving along the circle as t varies. Starting at t = 0, we are at (3, 0); at $t = \pi/2$, we are at (0, 3); at $t = \pi$, we are at (-3, 0); at $t = 3\pi/2$, we are at (0, -3). At $t = 2\pi$, we are back at (3, 0).

Parametric differentiation is a technique for finding derivatives of a parametrically defined curve.

First Derivative of Parametric Functions

Given a parametrically defined curve y = f(x) with parameter t, the first parametric derivative is:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

This looks awkward in the above Leibniz notation, so the Newton Dot Notation is often used:

$$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$$

 \dot{y} means differentiate y wrt to t, i.e. $\frac{dy}{dt}$.

 \dot{x} means differentiate x wrt to t, i.e. $\frac{dx}{dt}$.

Second Derivative of Parametric Functions

Given a parametrically defined curve y = f(x) with parameter t, the second parametric derivative is:

$$\frac{d^2y}{dx^2} = \frac{\frac{dx}{dt} \frac{d^2y}{dt^2} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$

Again, Dot Notation is extremely advantageous:

$$\frac{d^2y}{dx^2} = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$$

 \ddot{y} means differentiate y twice wrt to t, i.e. $\frac{d^2y}{dt^2}$.

* means differentiate x twice wrt to t, i.e. $\frac{d^2x}{dt^2}$.

Example 1

Show that the point A(0,3) lies on the curve defined parametrically by the equations,

$$x = t - \frac{1}{t}$$
, $y = 2t + \frac{1}{t}$

To show that the point A(0,3) lies on the curve, it must be shown that there is a common t - value that satisfies both equations.

We thus solve the equations x(t) = 0 and y(t) = 3 for t.

$$x(t) = 0:$$

$$t - \frac{1}{t} = 0$$

$$\Rightarrow \qquad \qquad \dagger^2 - 1 = 0$$

$$\Rightarrow \qquad \qquad \underline{\dagger = \pm 1}$$

$$y(t) = 3:$$

$$2 + \frac{1}{1} = 3$$

$$\Rightarrow 2 \dagger^2 + 1 = 3 \dagger$$

$$\Rightarrow$$
 2 t² - 3 t + 1 = 0

$$\Rightarrow$$
 $(2 \dagger - 1)(\dagger - 1) = 0$

$$\Rightarrow \qquad \qquad \underline{\dagger = 1/2, 1}$$

As there is a common t - value (t = 1) satisfying x(t) = 0 and y(t) = 3, A(0,3) lies on the curve.

Example 2

Find the gradient of the tangent line to the curve,

$$x = 2 \theta - \sin \theta$$
 , $y = 4 \theta + \cos \theta$

at $\theta = \pi/6$.

$$x = 2 \theta - \sin \theta$$
 , $y = 4 \theta + \cos \theta$

$$x = 2\theta - \sin\theta$$
 , $y = 4\theta + \cos\theta$
 $\dot{x} = 2 - \cos\theta$, $\dot{y} = 4 - \sin\theta$

$$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$$

$$\frac{dy}{dx} = \frac{4 - \sin \theta}{2 - \cos \theta}$$

When $\theta = \pi/6$,

$$\dot{x}(\pi/6) = 2 - \cos(\pi/6) = 2 - \sqrt{3/2}$$

$$\dot{y}(\pi/6) = 4 - \sin(\pi/6) = 4 - 1/2 = \frac{7/2}{2}$$

Hence,

$$\left(\frac{dy}{dx}\right)_{\theta = \pi/6} = \frac{7/2}{2 - \sqrt{3}/2}$$

$$\Rightarrow \left(\frac{dy}{dx} \right)_{\theta = \pi/6} = \frac{7}{4 - \sqrt{3}}$$

Example 3

Show that there is only one stationary point on the curve,

$$x = 5 + 4t$$
, $y = 3 - 3t^2$

and find its coordinates. Show also that the second derivative is constant.

$$x = 5 + 4t$$
, $y = 3 - 3t^{2}$
 $\dot{x} = 4$, $\dot{y} = -6t$
 $\ddot{x} = 0$, $\ddot{y} = -6$

$$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$$

$$\therefore \frac{dy}{dx} = \frac{-6 t}{4}$$

$$\Rightarrow \qquad \frac{dy}{dx} = -\frac{3t}{2}$$

For stationary points,

$$\frac{dy}{dx} = 0$$

$$\therefore -\frac{3\dagger}{2}=0$$

$$\Rightarrow$$
 $t = 0$

As there is only 1 solution to

$$\frac{dy}{dx} = 0$$
, there is only 1 SP.

$$x(t) = 5 + 4t \Rightarrow x(0) = 5$$

$$y(t) = 3 - 3t^2 \Rightarrow y(0) = 3$$

: Stationary point coordinates : (5, 3)

$$\frac{d^2y}{dx^2} = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$$

$$\therefore \frac{d^2y}{dx^2} = \frac{(4)(-6) - (0)(-6)}{4^3}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -\frac{3}{8} = constant$$

AH Maths - MiA (2nd Edn.)

pg. 96-7 Ex. 6.8 Q 1 a - d, 2 a,
 3 a, b, 4 a, 8.

Ex. 6.8

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the curve defined by each pair of parametric equations.

a x = tb $x = t^2$ c $x = t + \sin t$ d $x = 3t^3 - t$ $y = \frac{1}{t}$ b $y = \ln t$ c $y = t - \cos t$ d $y = 4t^2$

$$\begin{array}{cc}
x = t \\
y = \frac{1}{t}
\end{array}$$

- A curve is defined by the equations $x = t^2 + \frac{2}{t}$ and $y = t^2 \frac{2}{t}$.
 - a Find the coordinates of the turning point on the curve.
- a Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the curve defined by $x = t^2 \frac{1}{t^2}$ and $y = t^2 + \frac{1}{t^2}$.
 - b Determine the coordinates of the turning point on the curve.
- 4 For the curve defined by $x = \frac{2t}{1-t^2}$, $y = \frac{1+t^2}{1-t^2}$ show that

$$\mathbf{a} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y}$$

8 $x = 1 + \sin^2 \theta$ and $y = 1 - \sec^2 \theta$ are the parametric representations of a curve. Show that, at the point where $\tan \theta = 2$, the equation of the tangent is 25x + y = 41.

Answers to AH Maths (MiA), pg. 96-7, Ex. 6.8

1 a
$$-\frac{1}{t^2}, \frac{2}{t^3}$$
 b $\frac{1}{2t^2}, -\frac{1}{2t^4}$ c $\frac{1+\sin t}{1+\cos t}, \frac{(\cos t + \sin t + 1)}{(1+\cos t)^3}$

d
$$\frac{8t}{9t^2-1}$$
, $\frac{-8-72t^2}{(9t^2-1)^3}$

$$2 a (-1, 3)$$

3 a
$$\frac{t^4-1}{t^4+1}, \frac{4t^6}{(t^4+1)^3}$$
 b $(0,2)$

4 a
$$\frac{dx}{dt} = \frac{2 + 2t^2}{(1 - t^2)^2}$$
; $\frac{dy}{dt} = \frac{4t}{(1 - t^2)^2}$; $\frac{dy}{dx} = \frac{2t}{1 + t^2} = \frac{x}{y}$

8
$$\frac{dy}{dx} = -\frac{1}{\cos^4 \theta}$$
. When $\tan \theta = 2$, $\cos \theta = \frac{1}{\sqrt{5}}$, $\sin \theta = \frac{2}{\sqrt{5}}$