$23 / 8 / 17$

Unit 1 : Differential Calculus - Lesson 9

Parametric Differentiation

LI

- Differentiate functions parametrically.

SC

- Formulae.

A curve $y=f(x)$ is defined parametrically if x and y are written in terms of an independent variable called the parameter (usually denoted by t or θ). It often helps to think of the parameter as representing time.

The functions $x(t)$ and $y(t)$ are viewed as 2 functions of t and are called parametric functions or the parametric equations of the curve.

If the parameter can be eliminated, then an implicit equation (called the constraint equation) can be formed; this only contains x and y.

As an example, consider the parametric equations,

$$
x(t)=3 \cos t, y(t)=3 \sin t
$$

Squaring, adding and simplifying gives (suppressing the dependence on the parameter t),

$$
x^{2}+y^{2}=9
$$

This constraint equation describes a circle with centre the origin and radius 3. So, the parametric equations above for $x(t)$ and $y(t)$ describe this circle.

Each value of t gives a coordinate (x, y). So, varying t traces out a circle. Or, think of an object moving along the circle as \dagger varies. Starting at $t=0$, we are at (3, 0); at $t=\pi / 2$, we are at $(0,3)$; at $t=\pi$, we are at $(-3,0)$; at $t=3 \pi / 2$, we are at $(0,-3)$. At $t=2 \pi$, we are back at $(3,0)$.

Parametric differentiation is a technique for finding derivatives of a parametrically defined curve.

First Derivative of Parametric Functions

Given a parametrically defined curve $y=f(x)$ with parameter t, the first parametric derivative is :

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

This looks awkward in the above Leibniz notation, so the Newton Dot Notation is often used :

$$
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}
$$

\dot{y} means differentiate y wrt to t, i.e. $\frac{d y}{d t}$.
\dot{x} means differentiate x wrt to t, i.e. $\frac{d x}{d t}$.

Second Derivative of Parametric Functions

Given a parametrically defined curve $y=f(x)$ with parameter t, the second parametric derivative is :

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d x}{d t} \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t} \frac{d^{2} x}{d t^{2}}}{\left(\frac{d x}{d t}\right)^{3}}
$$

Again, Dot Notation is extremely advantageous :

$$
\frac{d^{2} y}{d x^{2}}=\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\dot{x}^{3}}
$$

\ddot{y} means differentiate y twice wrt to t, i.e. $\frac{d^{2} y}{d t^{2}}$.
\ddot{x} means differentiate x twice wrt to t, i.e. $\frac{d^{2} x}{d t^{2}}$.

Example 1

Show that the point $A(0,3)$ lies on the curve defined parametrically by the equations,

$$
x=t-\frac{1}{t}, y=2 t+\frac{1}{t}
$$

To show that the point $A(0,3)$ lies on the curve, it must be shown that there is a common t-value that satisfies both equations.

We thus solve the equations $x(t)=0$ and $y(t)=3$ for t.
$\underline{x(t)=0:}$

$$
\begin{array}{rlrl}
& & t-\frac{1}{t} & =0 \\
\Rightarrow & & t^{2}-1 & =0 \\
\Rightarrow & & t= \pm 1
\end{array}
$$

$y(t)=3:$

$$
\begin{array}{rlrl}
& & 2 t+\frac{1}{t} & =3 \\
\Rightarrow & & 2 t^{2}+1 & =3 t \\
\Rightarrow & 2 t^{2}-3 t+1 & =0 \\
\Rightarrow & & (2 t-1)(t-1) & =0 \\
\Rightarrow & & t & =1 / 2,1
\end{array}
$$

As there is a common t-value $(t=1)$ satisfying $x(t)=0$ and $y(t)=3, A(0,3)$ lies on the curve.

Example 2

Find the gradient of the tangent line to the curve,

$$
x=2 \theta-\sin \theta, y=4 \theta+\cos \theta
$$

at $\theta=\pi / 6$.

$$
\begin{aligned}
& x=2 \theta-\sin \theta, y=4 \theta+\cos \theta \\
& \dot{x}=2-\cos \theta \quad, \dot{y}=4-\sin \theta
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}
$$

$$
\therefore \quad \frac{d y}{d x}=\frac{4-\sin \theta}{2-\cos \theta}
$$

When $\theta=\pi / 6$,

$$
\begin{aligned}
& \dot{x}(\pi / 6)=2-\cos (\pi / 6)=2-\sqrt{3} / 2 \\
& \dot{y}(\pi / 6)=4-\sin (\pi / 6)=4-1 / 2=7 / 2
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)_{\theta=\pi / 6}=\frac{7 / 2}{2-\sqrt{3 / 2}} \\
\Rightarrow & \left(\frac{d y}{d x}\right)_{\theta=\pi / 6}=\frac{7}{4-\sqrt{3}}
\end{aligned}
$$

Example 3

Show that there is only one stationary point on the curve,

$$
x=5+4 t, y=3-3 t^{2}
$$

and find its coordinates. Show also that the second derivative is constant.

$$
\begin{array}{ll}
& \begin{array}{ll}
x=5+4 t, & y=3-3 t^{2} \\
\dot{x}=4 & , \dot{y}=-6 t \\
\ddot{x}=0, & \ddot{y}=-6
\end{array} \\
& \frac{d y}{d x}=\frac{\dot{y}}{\dot{x}} \\
\therefore \quad & \frac{d y}{d x}=\frac{-6 t}{4} \\
\Rightarrow \quad & \frac{d y}{d x}=-\frac{3 t}{2}
\end{array}
$$

For stationary points,

$$
\left.\begin{array}{rlrl}
& \frac{d y}{d x} & =0 \\
& \therefore & -\frac{3 t}{2} & =0 \\
& & & t
\end{array}\right)=0
$$

$$
\begin{aligned}
& \text { As there is only } 1 \text { solution to } \\
& \frac{d y}{d x}=0 \text {, there is only } 1 \mathrm{SP}
\end{aligned}
$$

$$
x(t)=5+4 t \Rightarrow x(0)=5
$$

$$
y(t)=3-3 t^{2} \Rightarrow y(0)=3
$$

$\therefore \quad$ Stationary point coordinates: $(5,3)$

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\dot{x}^{3}} \\
\therefore & \frac{d^{2} y}{d x^{2}}=\frac{(4)(-6)-(0)(-6)}{4^{3}} \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}=-\frac{3}{8}=\text { constant }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AH Maths - MiA (2 } 2^{\text {nd }} \text { Edn.) } \\
& \text { - pg. 96-7 Ex. 6.8 } Q 1 a-d, 2 a, \\
& 3 a, b, 4 a, 8 .
\end{aligned}
$$

Ex. 6.8

1 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for the curve defined by each pair of parametric equations.
a $\begin{aligned} & x=t \\ & y=\frac{1}{t}\end{aligned}$
b $\begin{aligned} & x=t^{2} \\ & y=\ln t\end{aligned}$
c $\begin{aligned} & x=t+\sin t \\ & y=t-\cos t\end{aligned}$
d $\begin{aligned} & x=3 t^{3}-t \\ & y=4 t^{2}\end{aligned}$

2 A curve is defined by the equations $x=t^{2}+\frac{2}{t}$ and $y=t^{2}-\frac{2}{t}$.
a Find the coordinates of the turning point on the curve.
3 a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for the curve defined by $x=t^{2}-\frac{1}{t^{2}}$ and $y=t^{2}+\frac{1}{t^{2}}$. b Determine the coordinates of the turning point on the curve.

4 For the curve defined by $x=\frac{2 t}{1-t^{2}}, y=\frac{1+t^{2}}{1-t^{2}}$ show that
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y}$
$8 x=1+\sin ^{2} \theta$ and $y=1-\sec ^{2} \theta$ are the parametric representations of a curve.
Show that, at the point where $\tan \theta=2$, the equation of the tangent is $25 x+y=41$.

Answers to AH Maths (MiA), pg. 96-7, Ex. 6.8

$$
\begin{aligned}
& \begin{array}{l}
1 \text { a } \quad-\frac{1}{t^{2}}, \frac{2}{t^{3}} \\
\text { c } \quad \frac{1+\sin t}{1+\cos t}, \frac{(\cos t+\sin t+1)}{(1+\cos t)^{3}} \\
\text { d } \frac{8 t}{9 t^{2}-1}, \frac{-8-72 t^{2}}{\left(9 t^{2}-1\right)^{3}} \\
2 \text { a } \quad(-1,3) \\
3 \text { a } \frac{t^{4}-1}{t^{4}+1}, \frac{4 t^{6}}{\left(t^{4}+1\right)^{3}} \quad \quad \text { b } \quad(0,2) \\
4 \text { a } \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2+2 t^{2}}{\left(1-t^{2}\right)^{2}} ; \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{4 t}{\left(1-t^{2}\right)^{2}} ; \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 t}{1+t^{2}}=\frac{x}{y} \\
8 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{\cos ^{4} \theta} \text {. When } \tan \theta=2, \cos \theta=\frac{1}{\sqrt{5}}, \sin \theta=\frac{2}{\sqrt{5}}
\end{array}
\end{aligned}
$$

