22 / 11 / 17
Unit 2 : Sequences and Series - Lesson 9

Differentiation and Integration of Maclaurin Series

LI

- Obtain Maclaurin series using standard ones.

SC

- Standard Maclaurin series.
- Standard derivatives and integrals.

Power series can be differentiated and integrated term by term; if $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, then:

$$
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots
$$

and

$$
\int f(x) d x=a_{0} x+\frac{a_{1} x^{2}}{2}+\frac{a_{2} x^{3}}{3}+\frac{a_{3} x^{4}}{4}+\ldots
$$

Example 1

Given that $\tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\ldots$, find the Maclaurin series for $\sec ^{2}(2 x)$ up to x^{4}.

$$
\begin{aligned}
\tan x & =x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\ldots \\
\therefore \quad \tan (2 x) & =2 x+\frac{8 x^{3}}{3}+\frac{64 x^{5}}{15}+\frac{2176 x^{7}}{315}+\ldots
\end{aligned}
$$

Differentiating each side of the previous equation gives,

$$
\begin{aligned}
& 2 \sec ^{2}(2 x)=2+8 x^{2}+\frac{64 x^{4}}{3}+\ldots \\
\Rightarrow & \sec ^{2}(2 x)=1+4 x^{2}+\frac{32 x^{4}}{3}+\ldots
\end{aligned}
$$

Example 2

Using the Maclaurin series for $\ln (1+x)$, obtain the Maclaurin series for $(1+3 x)^{-1}$ up to x^{3}.

$$
\begin{aligned}
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \\
\therefore \quad & \ln (1+3 x)=3 x-\frac{9 x^{2}}{2}+9 x^{3}-\frac{81 x^{4}}{4}+\ldots
\end{aligned}
$$

Differentiating each side of the previous equation gives,

$$
\begin{aligned}
& 3(1+3 x)^{-1}=3-9 x+27 x^{2}-81 x^{3}+\ldots \\
\Rightarrow & (1+3 x)^{-1}=1-3 x+9 x^{2}-27 x^{3}+\ldots
\end{aligned}
$$

Example 3

Given that $\frac{1}{\sqrt{1-x^{2}}}=1+\frac{x^{2}}{2}+\frac{3 x^{4}}{8}+\frac{5 x^{6}}{16}+\ldots$,
find the Maclaurin series for $\sin ^{-1} x$ up to x^{5}.

Recalling the standard integral,

$$
\sin ^{-1} x=\int \frac{1}{\sqrt{1-x^{2}}} d x
$$

integrating the given series gives,

$$
\sin ^{-1} x=x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\ldots
$$

Questions

1) Given that $\sec x=1+\frac{x^{2}}{2}+\frac{5 x^{4}}{24}+\frac{61 x^{6}}{720}+\ldots$, find the Maclaurin series for $\sec (2 x) \tan (2 x)$ up to x^{5}.
2) Using the Maclaurin series for $\ln (1+x)$, obtain the Maclaurin series for $(1-5 x)^{-1}$ up to x^{3}.
3) Given that $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots$, find the Maclaurin series for $\tan ^{-1} x$ up to x^{5}.

Answers

1) $\sec (2 x) \tan (2 x)=2 x+\frac{20 x^{3}}{3}+\frac{244 x^{5}}{15}+\ldots$
2) $(1-5 x)^{-1}=1+5 x+25 x^{2}+125 x^{3}+\ldots$
3) $\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots$
