17 / 6 / 17
 Force, Energy and Periodic Motion - Lesson 1

Circular Motion Theory

LI

- Know and use the definitions of Angular Displacement and Angular Velocity.
- Express linear velocity and linear acceleration in Polar Coordinates.

SC

- Vectors.
- Product Rule.

Definition:

Circular motion is motion in a circle of fixed radius.
Circular Motion is best described by using the Polar Coordinate system (instead of the $x-y$ Cartesian Coordinate system).

Polar Coordinates

Definition:

The polar coordinate system is described by polar coordinates (r, θ), where $r>0$ is the radial coordinate (aka radius) and $\theta \in(-\pi, \pi]$ is the angular coordinate (aka polar angle).
θ is measured from the positive x-axis direction and $-\pi<\theta \leq \pi$.

Radial and Tangential Unit Vectors

Instead of using the unit vectors \underline{i} and \mathbf{j}, we use a different pair of perpendicular unit vectors $\underline{\boldsymbol{e}}_{r}$ and $\underline{\boldsymbol{e}}_{\theta}$.

Definition:
The (radial) displacement of a particle in polar coordinates is,

$$
\mathbf{r}=r \boldsymbol{e}_{\mathbf{r}}
$$

where \boldsymbol{e}_{r} is the radial unit vector.

Definition:
The angular displacement of a particle in polar coordinates is,

$$
\theta=\theta e_{\theta}
$$

where e_{θ} is the tangential unit vector (aka angular unit vector).

Important Fact

For circular motion, the \underline{i} and \mathbf{j} unit vectors are fixed (constant), but the $\underline{\boldsymbol{e}}_{r}$ and $\underline{\boldsymbol{e}}_{\theta}$ vectors change (not constant).

The following 2 lemmas (and their respective corollaries) follow from the previous diagram and the definitions thereafter.

Lemma:

The radial unit vector can be written in terms of Cartesian unit vectors as,

$$
\mathbf{e}_{\mathbf{r}}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}
$$

Corollary:

The displacement of a particle in Cartesian coordinates is,

$$
\mathbf{r}=(r \cos \theta) \mathbf{i}+(r \sin \theta) \mathbf{j}
$$

Lemma:

The tangential unit vector can be written in terms of Cartesian unit vectors as,

$$
\boldsymbol{e}_{\theta}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}
$$

Corollary:

The angular displacement of a particle in Cartesian coordinates is,

$$
\theta=(-\theta \sin \theta) \mathbf{i}+(\theta \cos \theta) \mathbf{j}
$$

As we are considering circular motion, r is constant, but θ is a function of time : $\theta(t)$

Kinematical Quantities for Rotational Motion

Definition:

The angular velocity is the time-derivative of angular displacement,

$$
\text { omega: } \omega \longrightarrow \omega \equiv \dot{\theta} \stackrel{\text { def }}{=} \frac{d \boldsymbol{\theta}}{d t}
$$

Angular velocity has derived SI unit the rads ${ }^{-1}$.
Magnitude of angular velocity $\underline{\boldsymbol{\omega}}$ is angular speed ω.
In this course, we take ω to be constant. Then the relation $\omega-\frac{d \theta}{d t}$ simplifies.

Corollary:

For constant angular velocity,

$$
\theta=\omega t
$$

In the special case of 1 revolution, the result in the previous corollary becomes the content of the following corollary.

Corollary:

For 1 revolution, the period and angular speed are linked by,

$$
T=\frac{2 \pi}{\omega}
$$

(To see this, take $\theta=2 \pi$ radians and t as the period T)

Connecting Linear Speed (v) to Angular Speed (w)

Differentiating $\underline{\mathbf{r}}=(r \cos \theta) \underline{\mathbf{i}}+(r \sin \theta) \mathbf{j} w r t+$ and remembering that r is constant but θ depends on t, we have:

$$
\begin{aligned}
& \underline{r}=(r \cos \theta) \underline{i}+(r \sin \theta) \mathbf{j} \\
& \therefore \quad \underline{\mathbf{v}}=(-r \dot{\theta} \sin \theta) \underline{\mathbf{i}}+(r \dot{\theta} \cos \theta) \mathbf{j} \\
& \Rightarrow \quad \underline{\mathbf{v}}=r \dot{\theta}(-\sin \theta \underline{\mathbf{i}}+\cos \theta \mathbf{j}) \\
& \Rightarrow \quad \underline{\mathbf{v}}=r \dot{\theta} \underline{\boldsymbol{e}}_{\theta}=\omega r \underline{\boldsymbol{e}}_{\theta} \\
& \therefore \quad v=\omega r \quad \text { (Taking magnitudes) }
\end{aligned}
$$

The linear velocity (v) has magnitude ωr and is tangent to the circle (points in same direction as $\underline{\boldsymbol{e}}_{\theta}$)

Definition:

The angular acceleration is the time-derivative of angular velocity,

$$
\text { alpha: } \alpha \longrightarrow \boldsymbol{a} \stackrel{\text { def }}{=} \frac{d \omega}{d t} \equiv \dot{\omega}=\frac{d^{2} \theta}{d t^{2}}
$$

Angular acceleration has derived SI unit the rads ${ }^{-2}$.
Magnitude of angular acceleration $\underline{\alpha}$ is α.
In this course, we normally take a to be 0 .
Connecting Linear Acceleration (a) to Angular Speed (w)
Differentiating $\underline{\mathbf{v}}=(-r \dot{\theta} \sin \theta) \underline{i}+(r \dot{\theta} \cos \theta) \mathbf{j} w r t \quad t$, we have, using the Product Rule (as both θ and it's derivative are functions of time):

$$
\begin{aligned}
\underline{\mathbf{v}} & =(-r \dot{\theta} \sin \theta) \underline{\mathbf{i}}+(r \dot{\theta} \cos \theta) \dot{\mathbf{j}} \\
\therefore \underline{\boldsymbol{a}} & =-r\left(\ddot{\theta} \sin \theta+\dot{\theta}^{2} \cos \theta\right) \underline{\mathfrak{i}}+r\left(\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right) \dot{\mathbf{j}}
\end{aligned}
$$

As we take $\omega=\dot{\theta}$ to be constant, this means that $\ddot{\theta}=0$. So,

$$
\underline{\mathbf{a}}=-r \dot{\theta}^{2} \cos \theta \underline{\mathbf{i}}-r \dot{\theta}^{2} \sin \theta \mathbf{j}
$$

$\Rightarrow \underline{\mathbf{a}}=-r \dot{\theta}^{2}(\cos \theta \underline{\mathbf{i}}+\sin \theta \dot{\mathbf{j}})$
$\Rightarrow \underline{\boldsymbol{a}}=-r \dot{\theta}^{2} \underline{\boldsymbol{e}}_{r}=-\omega^{2} r \underline{\mathbf{e}}_{r}$
$\therefore a=\omega^{2} r=\frac{v^{2}}{r} \quad$ (using $v=\omega r$)
The linear acceleration (a) has magnitude $\omega^{2} r$ and is towards the centre of the circle (points in direction opposite to \underline{e}_{r})

Example 1

A uniformly rotating disc completes 1 revolution every 20 s.

Find the angular speed of the disc in:
(a) rev $\min ^{-1}$
(b) $\mathrm{rad} \min ^{-1}$
(c) rads^{-1}.

1 rev in 20 s
$1 \mathrm{rev}=2 \pi \mathrm{rad}$
covers 2π radians
(a) As the rotation is uniform, w is constant. 1 rev is completed every $20 \mathrm{~s}=1 / 3 \mathrm{~min}$, so, using $\omega=\theta / \dagger$,
$\omega=\frac{1 \mathrm{rev}}{1 / 3 \mathrm{~min}} \Rightarrow \omega=3 \mathrm{rev}_{\mathrm{min}}{ }^{-1}$
(b) 1 rev is equivalent to $2 \pi \mathrm{rad}$, so,
$\omega=\frac{2 \pi \mathrm{rad}}{1 / 3 \mathrm{~min}} \Rightarrow \omega=6 \pi \mathrm{rad} \mathrm{min}^{-1}$
(c) As $1 / 3 \mathrm{~min}=20 \mathrm{~s}$, we have,

$$
\omega=\frac{2 \pi \mathrm{rad}}{20 \mathrm{~s}} \Rightarrow \omega=\pi / 10 \mathrm{rads}^{-1}
$$

Example 2

Find the speed in ms^{-1} of a particle moving on a circular path of radius 30 cm with an angular speed of $5 \mathrm{rev} \mathrm{min}^{-1}$.

An angular speed of $5 \mathrm{rev} \mathrm{min}^{-1}$ means,

$$
\begin{array}{rlrl}
& \omega & =\frac{5 \mathrm{rev}}{1 \mathrm{~min}} \\
& \Rightarrow \quad \omega & =\frac{5(2 \pi) \mathrm{rad}}{60 \mathrm{~s}} \\
& \Rightarrow \quad \omega & =\pi / 6 \mathrm{rad} \mathrm{~s}^{-1} \\
& & v & =\omega \mathrm{r} \\
& \therefore \quad v & =(\pi / 6)(0.3) \\
& \Rightarrow & v & =(\pi / 6)(3 / 10) \\
& \Rightarrow & v & =\pi / 20 \mathrm{~ms}^{-1}
\end{array}
$$

Example 3

Find the acceleration of a particle moving in a circular path of radius 60 cm with a constant angular velocity of $4 \mathrm{rads}^{-1}$.

$$
\begin{array}{rlrl}
& & a & =\omega^{2} r \\
& \therefore & a & =4^{2}(0.6) \\
\Rightarrow & a & =16(6 / 10) \\
\Rightarrow & a & =48 / 5 \mathrm{~ms}^{-2}
\end{array}
$$

Blue Book

- pg. 307-308 Ex. 13 A All Q.
- pg. 313 Ex. 13 B Q 1-3.

