22 / 8 / 17
 Unit 1 : Differential Calculus - Lesson 8
 Logarithmic Differentiation

LI

- Differentiate functions logarithmically.

SC

- Log. Rules.
- Chain Rule.

Logarithmic differentiation is a technique
 for differentiating functions by taking logarithms first

Logarithmic differentiation should be used when any one of the following indicators are present.

- Bracketed terms with fractional powers.
- Variable is in the power.
- Product or quotient of more than 2 functions.

Example 1

Differentiate $y=3^{x}$.

$$
\begin{array}{rlrl}
& & y & =3^{x} \\
\therefore & & \ln y & =x \ln 3 \\
\Rightarrow & & \ln y & =(\ln 3) x \\
\therefore & y^{\prime} / y & =\ln 3 \\
\Rightarrow & y^{\prime} & =y \ln 3 \\
\Rightarrow & & y^{\prime}=3^{x} \cdot \ln 3 \\
\left.y^{\prime}=(\ln 3) 3^{x}\right)
\end{array}
$$

Example 2

Differentiate $f(x)=(\sin x)^{x}$.

$$
\begin{aligned}
& f(x)=(\sin x)^{x} \\
& \therefore \quad \ln f(x)=\ln (\sin x)^{x} \\
& \Rightarrow \quad \ln f(x)=x \ln (\sin x) \\
& \therefore \quad f^{\prime}(x) / f(x)=1 \cdot \ln (\sin x)+x .(\cos x) / \sin x \\
& \Rightarrow \quad f^{\prime}(x) / f(x)=\ln (\sin x)+x \cot x \\
& \Rightarrow \quad f^{\prime}(x)=f(x)(\ln (\sin x)+x \cot x) \\
& \Rightarrow \quad f^{\prime}(x)=(\sin x)^{x}(\ln (\sin x)+x \cot x)
\end{aligned}
$$

Example 3

Find w^{\prime} if $w=x^{\operatorname{cosec} 4 x}$.

$$
\begin{aligned}
& & w & =x^{\operatorname{cosec} 4 x} \\
& \therefore & \ln w & =\ln \left(x^{\operatorname{cosec} 4 x}\right) \\
\Rightarrow & & \ln w & =\operatorname{cosec} 4 x \cdot \ln x \\
& \therefore & w^{\prime} / w & =-4 \operatorname{cosec} 4 x \cot 4 x \cdot \ln x+\operatorname{cosec} 4 x \cdot(1 / x) \\
\Rightarrow & & w^{\prime} & =w(-4 \operatorname{cosec} 4 x \cot 4 x \ln x+\operatorname{cosec} 4 x \cdot(1 / x)) \\
\Rightarrow & & w^{\prime} & =x^{\operatorname{cosec} 4 x}(-4 \operatorname{cosec} 4 x \cot 4 x \ln x+\operatorname{cosec} 4 x \cdot(1 / x)) \\
& & & w^{\prime}
\end{aligned}
$$

Example 4

Find the derivative of the function defined by
$y(x)=(\cos x)^{\cot x}$.

$$
\begin{aligned}
& & y & =(\cos x)^{\cot x} \\
& \therefore & \ln y & =\ln (\cos x)^{\cot x} \\
& \Rightarrow & \ln y & =\cot x \cdot \ln (\cos x) \\
& \therefore & y^{\prime} / y & =-\operatorname{cosec}^{2} x \cdot \ln (\cos x)+\cot x \cdot((-\sin x) / \cos x) \\
& \Rightarrow & y^{\prime} / y & =-\operatorname{cosec}^{2} x \cdot \ln (\cos x)-\cot x \tan x \\
& \Rightarrow & y^{\prime} / y & =-\operatorname{cosec}^{2} x \cdot \ln (\cos x)-1 \\
& \Rightarrow & y^{\prime} & =-y\left(\operatorname{cosec}^{2} x \cdot \ln (\cos x)+1\right) \\
& \Rightarrow & y^{\prime} & =-(\cos x)^{\cot x}\left(\operatorname{cosec}{ }^{2} x \cdot \ln (\cos x)+1\right)
\end{aligned}
$$

Example 5

Differentiate $y=\frac{e^{4 x} \sec x}{x^{3}}$.

$$
\begin{aligned}
& y & =\frac{e^{4 x} \sec x}{x^{3}} \\
\therefore & \quad \ln y & =\ln \left(\frac{e^{4 x} \sec x}{x^{3}}\right) \\
\Rightarrow \quad & \ln y & =\ln \left(e^{4 x}\right)+\ln (\sec x)-\ln \left(x^{3}\right) \\
\Rightarrow \quad & \ln y & =4 x \ln (e)+\ln (\sec x)-3 \ln x \\
\Rightarrow \quad & \ln y & =4 x+\ln (\sec x)-3 \ln x \\
\therefore \quad & y^{\prime} / y & =4+((\sec x \tan x) / \sec x)-3 / x \\
\Rightarrow \quad & y^{\prime} / y & =4+\tan x-3 / x \\
\Rightarrow \quad & y^{\prime} & =y(4+\tan x-3 / x)
\end{aligned}
$$

$$
\Rightarrow \quad y^{\prime}=\left(\frac{e^{4 x} \sec x}{x^{3}}\right)(4+\tan x-3 / x)
$$

$$
\left(y^{\prime}=\frac{e^{4 x} \sec x(4 x+x \tan x-3)}{x^{4}}\right)
$$

Example 6

$$
\begin{aligned}
& \text { Differentiate } y=\frac{\sqrt[3]{3 x+4} \sqrt{2 x+1}}{\sqrt[4]{4 x-7}} . \\
& y=(3 x+4)^{1 / 3}(2 x+1)^{1 / 2}(4 x-7)^{-1 / 4}
\end{aligned}
$$

$\therefore \quad \ln y=\ln (3 x+4)^{1 / 3}+\ln (2 x+1)^{1 / 2}+\ln (4 x-7)^{-1 / 4}$
$\Rightarrow \ln y=(1 / 3) \ln (3 x+4)+(1 / 2) \ln (2 x+1)-(1 / 4) \ln (4 x-7)$
$\therefore y^{\prime} / y=\frac{(1 / 3)(3)}{3 x+4}+\frac{(1 / 2)(2)}{2 x+1}-\frac{(1 / 4)(4)}{4 x-7}$
$\Rightarrow y^{\prime} / y=\frac{1}{3 x+4}+\frac{1}{2 x+1}-\frac{1}{4 x-7}$
$\Rightarrow \quad y^{\prime}=y\left(\frac{1}{3 x+4}+\frac{1}{2 x+1}-\frac{1}{4 x-7}\right)$

$$
\Rightarrow y^{\prime}=\left(\frac{\sqrt[3]{3 x+4} \sqrt{2 x+1}}{\sqrt[4]{4 x-7}}\right)\left(\frac{1}{3 x+4}+\frac{1}{2 x+1}-\frac{1}{4 x-7}\right)
$$

AH Maths - MiA (2 ${ }^{\text {nd }} E d n$.)

- pg. 92 Ex. 6.6 Q 1, 2, 4, 5, 7.

Ex. 6.6

1 Find the derivatives of these functions.
a $f(x)=5^{2 x}$
b $f(x)=(x+1)^{x-1}$
c $f(x)=e^{\sin ^{2} x}$
d $f(x)=3^{e^{x}}$
e $f(x)=(\cos x)^{x}$

2 Find the derived function for each of these functions.
a $f(x)=x^{x^{2}}$
b $f(x)=\pi^{x^{3}}$
c $f(x)=\frac{e^{x} \sin x}{x}$
d $f(x)=x e^{-x} \cos x$
e $f(x)=\left(1-x^{3}\right)^{\sin x}$

4 Show that $y=e^{\cos ^{2} x} \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\left(\sin ^{2} 2 x-2 \cos 2 x\right) y$.
5 Show that the tangent to the curve with equation $y=(\sin x)^{x}$ at $x=\frac{\pi}{2}$ is parallel to the x-axis.
7 Find the equation of the tangent to the curve with equation $y=\frac{x(2 x+1)^{\frac{3}{2}}}{(3 x-4)^{\frac{2}{3}}}$ at the point where $x=4$.

Answers to AH Maths (MiA), pg. 92, Ex. 6.6
1 a $(2 \ln 5) 5^{2 x}$
b $(x+1)^{x-1}\left(\left(\frac{x-1}{x+1}\right)+\ln (x+1)\right)$
c $\sin 2 x e^{\sin ^{2} x}$
d $\ln 3 e^{x} 3^{e^{x}}$
e $(\ln \cos x-x \tan x)(\cos x)^{x}$
2 a $(x+2 x \ln x) x^{x^{2}} \quad$ b $3 x^{2} \ln \pi \cdot \pi^{x^{3}}$
c $\frac{e^{x}((x-1) \sin x+x \cos x)}{x^{2}}$
d $(\cos x-x \sin x-x \cos x) e^{-x}$
$\mathrm{e}\left(1-x^{3}\right)^{\sin x}\left(\cos x \ln \left(1-x^{3}\right)-\frac{3 x^{2} \sin x}{1-x^{3}}\right)$
$4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2 \cos x \sin x \cdot e^{\cos ^{2} x}=-\sin 2 x e^{\cos ^{2} x}$
$\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\sin 2 x \cdot e^{\cos ^{2} x} \cdot-2 \cos x \sin x$ $+e^{\cos ^{2} x} \cdot-2 \cos 2 x=\left(\sin ^{2} 2 x-2 \cos 2 x\right) e^{\cos ^{2} x}$
$5 \ln y=x \ln (\sin x) \Rightarrow \frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \frac{\cos x}{\sin x}+\ln (\sin x) \Rightarrow$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=x \cos x(\sin x)^{x-1}+(\sin x)^{x} \ln (\sin x)=0$ when $x=\frac{\pi}{2}$
$7 y=9 x-9$

