12 / 9 / 16 Graphs of Related Functions - Lesson 8
 Graph of the Derivative

LI

- Sketch the graph of the derivative of a function.

SC

- Identify where a function is increasing, decreasing and has stationary points.

Reminder on Increasing, Decreasing and Stationary Points

An interval is a set of values (usually x)

A function is increasing on an interval if the derivative is positive for every x - value in that interval

A function is decreasing on an interval if the derivative is negative for every x - value in that interval

A function is stationary at $x=a$ if:

$$
\left(\frac{d y}{d x}\right)_{x=a}=0
$$

At the indicated points :

Graph is flat: 0 gradient (derivative)

Graph is increasing: + ve gradient

Graph is decreasing : - ve gradient

f is stationary when $x=a, b, c, d$.
f is increasing when $x<a, b<x<c$ and $x>d$.
f is decreasing when $a<x<b$ and $c<x<d$.

Some useful guidelines

- constant function
(horizontal line)
- linear function
(straight line)
- quadratic function
(parabola)
- cubic function (cubic)

11

11

11
(horizontal line on x-axis)
constant function
(horizontal line)
linear function
(straight line)
quadratic function
(parabola)
etc.

Strategy for Sketching the Graph of the Derivative (Remember, 'gradient' means 'derivative')

- Look at where the graph of $y=f(x)$ is flat (i.e. has a 0 gradient).
- Project these points down to the x-axis for the graph of the derivative: the graph of the derivative will cross the x-axis at these points.
- Look at regions between these x-axis points (and to the left of the leftmost point and to the right of the rightmost one) and decide if $y=f(x)$ is increasing or decreasing. If increasing, the derivative is positive and the graph of the derivative is above the
 x - axis; if decreasing, the graph of the derivative is below the x-axis.
- Join all the dots smoothly.

Example 1

The graph of the function $y=(3 / 2) x-0.1$ is shown below.

Sketch the graph of the derivative of $f(x)$.

gradient of $f(x)$ is the same constant number for all x - values; so, graph of $f^{\prime}(x)$
is always this value

Example 2

The graph of a quadratic function $y=f(x)$ is shown below.

Sketch the graph of the derivative of $f(x)$.

Example 3

The graph of the function $y=f(x)$ is shown below.

Sketch the graph of the derivative of $f(x)$.

Example 4

The graph of the function $y=f(x)$ is shown below.
The gradient of the curve at the point $(0,6)$ is 5 .

Sketch the graph of the derivative of $f(x)$.

CfE Higher Maths

$$
\text { pg. 80-81 Ex. } 3 \mathrm{G} \text { All Q }
$$

