7 / 2 / 18

Matrices and Systems of Equations - Lesson 7

Transformation Matrices

LI

- Know Basic Transformation Matrices.
- Find Image Points under a transformation.
- Find Invariant Points.
- Find Composite Transformations.
- Find Equations of Transformed Curves.

SC

- Matrix multiplication.
- 2×2 inverses.

A geometrical transformation is a way of changing points in space

A linear transformation in the plane is a function that sends a point $P(x, y)$ to $Q(a x+b y, c x+d y)$
($a, b, c, d \in \mathbb{R}$); the function is described by a 2×2 transformation matrix:

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}
$$

Q
P

A transformation matrix is obtained by looking at where the geometrical transformation sends the points $(1,0)$ and $(0,1)$

Basic Transformation Matrices

Geometrical Transformation	Transformation Matrix
Reflection in x-axis	$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$
Reflection in y - axis	$\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
Reflection in line $y=x$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
Anticlockwise rotation of angle θ about origin	$\left(\begin{array}{rrr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
Scaling (aka Dilatation)	$\begin{aligned} & \left(\begin{array}{ll} k & 0 \\ 0 & k \end{array}\right) \quad(k \in \mathbb{R}) \\ & (k>1 \text { : enlargement }) \\ & (k<1 \text { : reduction }) \end{aligned}$

A composite transformation is a combination
of at least 2 basic transformations; they
are found by matrix multiplication

An invariant point is a point whose coordinates stay the same under a transformation

Example 1

Find the matrix associated with the transformation,

$$
x^{\prime}=2 x+5 y, y^{\prime}=x-3 y .
$$

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{2 x+5 y}{x-3 y}=\left(\begin{array}{rr}
2 & 5 \\
1 & -3
\end{array}\right)\binom{x}{y}
$$

Transformation matrix: $\left(\begin{array}{rr}2 & 5 \\ 1 & -3\end{array}\right)$

Example 2

Find the image of the point $P(3,-1)$ under the transformation associated with the matrix $\left(\begin{array}{rr}1 & -2 \\ 3 & 0\end{array}\right)$.

$$
\left(\begin{array}{rr}
1 & -2 \\
3 & 0
\end{array}\right)\binom{3}{-1}=\binom{5}{9}
$$

$$
\text { Image of } P:\binom{5}{9}
$$

Example 3

Find the transformation matrix associated with a reflection in the x-axis followed by an anticlockwise rotation of 90° about the origin.

The order in which the transformations are done is important, as the order in which matrices are multiplied is important. Let the reflection matrix be denoted by T_{R} and the rotation matrix by T_{θ}. The required matrix is $T_{\theta} T_{R}$, as T_{R} acts first on point (x, y), then T_{θ} acts on the result of this.

$$
\begin{aligned}
& T_{\theta} T_{R}=\left(\begin{array}{rr}
\cos 90^{\circ} & -\sin 90^{\circ} \\
\sin 90^{\circ} & \cos 90^{\circ}
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \Rightarrow T_{\theta} T_{R}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \Rightarrow \quad T_{\theta} T_{R}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Example 4

Find the invariant points) under the transformation matrix $\left(\begin{array}{rr}-1 & 2 \\ 2 & 3\end{array}\right)$.

$$
\begin{array}{ll}
& \left(\begin{array}{rr}
-1 & 2 \\
2 & 3
\end{array}\right)\binom{x}{y}=\binom{x}{y} \\
\therefore & \binom{-x+2 y}{2 x+3 y}=\binom{x}{y}
\end{array}
$$

Equating components gives,

$$
\begin{aligned}
& -x+2 y=x \Rightarrow x=y \\
& 2 x+3 y=y \Rightarrow x=-y
\end{aligned}
$$

Hence, $x=0$ and $y=0$.

$$
\text { Invariant point : }(0,0)
$$

Example 5

Find the image of the curve $y=3 x^{2}$ under the transformation with matrix $\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$.

Let a typical image point have coordinates $\left(x^{\prime}, y^{\prime}\right)$. Then,

$$
\begin{array}{rlrl}
& \binom{x^{\prime}}{y^{\prime}} & =\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)\binom{x}{y} \\
\therefore & & \binom{x}{y} & =\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)\binom{x^{\prime}}{y^{\prime}} \\
\Rightarrow & \binom{x}{y} & =\left(\begin{array}{rr}
-3 & 2 \\
2 & -1
\end{array}\right)\binom{x^{\prime}}{y^{\prime}} \\
\Rightarrow & \left(\begin{array}{l}
-3 x^{\prime}+2 y^{\prime} \\
2 x^{\prime}- \\
y^{\prime}
\end{array}\right) & = \\
\therefore & 2 x^{\prime}-y^{\prime} & =3\left(-3 x^{\prime}+2 y^{\prime}\right)^{2}
\end{array}
$$

AH Maths - MiA (2 ${ }^{\text {nd }} E d n$.)

- pg. 251-2 Ex. 13.10

Q 1, 2a, b, e, 3, 6 a, b, c.

- pg. 253-5 Ex. 13.11 Q 1, 2 a, b.
- pg. 255-6 Ex. 13.12 Q 1,3,4.

Ex. 13.10

1 In each of these, find the image of the point P under the transformation with the associated matrix A.
a $\mathrm{P}(1,2) ; A=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$
b $\mathrm{P}(3,4) ; A=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$
c $\mathrm{P}(-1,2) ; A=\left(\begin{array}{rr}3 & -4 \\ 4 & 3\end{array}\right)$

2 The triangle ABC has vertices $\mathrm{A}(1,1), \mathrm{B}(2,3)$ and $\mathrm{C}(-1,4)$.
Work out its image under the transformation associated with each of these matrices.
a $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ reflection in $y=x$
$\mathrm{b}\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$ reflection in $x=0$
$\mathrm{e}\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ enlargement $(\times 2)$

3 A transformation maps (a, b) onto (a^{\prime}, b^{\prime}).

$$
(a, b) \rightarrow\left(a^{\prime}, b^{\prime}\right) \text { where } a^{\prime}=2 a+3 b, b^{\prime}=a-2 b
$$

The matrix associated with such a mapping is $\left(\begin{array}{rr}2 & 3 \\ 1 & -2\end{array}\right)$.
In a similar way, find the matrix associated with each of these mappings.
a $(a, b) \rightarrow\left(a^{\prime}, b^{\prime}\right)$ where $a^{\prime}=2 a+b, b^{\prime}=-2 a+b$
b $(a, b) \rightarrow\left(a^{\prime}, b^{\prime}\right)$ where $a^{\prime}=3 a-4 b, b^{\prime}=2 a+3 b$
c $(a, b) \rightarrow(5 a+3 b, 3 a-2 b)$
$\mathrm{d}(a, b) \rightarrow(a+b, a-b)$
e $(a, b) \rightarrow(-b,-a)$
6 Describe in words the transformation associated with

$$
a\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) \quad b\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right) c\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Ex. 13.11

1 Find all the invariant points of the transformation associated with these matrices.
a $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
b $B=\left(\begin{array}{ll}3 & 4 \\ 2 & 5\end{array}\right)$
c $C=\left(\begin{array}{ll}2 & 1 \\ 7 & 8\end{array}\right)$
d $D=\left(\begin{array}{ll}4 & 5 \\ 3 & 6\end{array}\right)$
e $E=\left(\begin{array}{ll}3 & 4 \\ 3 & 7\end{array}\right)$

2 Find the equation of the image of each curve under the mapping with the given associated matrix.
a $y=x^{2}, A=\left(\begin{array}{ll}1 & 0 \\ 2 & 2\end{array}\right)$
b $y=2 x+1, B=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$

Ex. 13.12

1 Let X denote reflection in the x-axis, and Y denote reflection in the y-axis.
a Write the matrix associated with i X ii Y iii $X Y$ iv $Y X$
b Write the image of $\mathrm{P}(a, b)$ after the transformation i $X Y$ ii $Y X$
c Considering the geometry, is it a surprise that the image is the same in both cases?
3 Let F denote reflection in the x-axis, and G denote reflection in the line $y=x$.
a Find the matrix associated with i $G F$ ii $F G$
b Explain briefly (geometrically) why $G F \neq F G$.
4 As already stated, the matrix $\left(\begin{array}{rr}\cos \theta^{\circ} & -\sin \theta^{\circ} \\ \sin \theta^{\circ} & \cos \theta^{\circ}\end{array}\right)$ is associated with an anticlockwise rotation of θ° about the origin.
a Write the matrices P, Q and R respectively associated with an anticlockwise rotation about the origin of i A° ii B° iii $(A+B)^{\circ}$
b By expanding $P Q$ and equating its entries with those of R, find well-known expansions for $\sin (A+B)$ and $\cos (A+B)$.
Explain why equating entries is valid.

Answers to AH Maths (MiA), pg. 251-2, Ex. 13.10
1 a $(1,4)$
b $(7,6)$
c $(-11,2)$
2 a $A^{\prime}(1,1), B^{\prime}(3,2), C^{\prime}(4,-1)$
b $A^{\prime}(-1,1), B^{\prime}(-2,3), C^{\prime}(1,4)$
e $\quad A^{\prime}(2,2), B^{\prime}(4,6), C^{\prime}(-2,8)$
3 a $\left(\begin{array}{rr}2 & 1 \\ -2 & 1\end{array}\right)$
b $\quad\left(\begin{array}{rr}3 & -4 \\ 2 & 3\end{array}\right)$
c $\quad\left(\begin{array}{rr}5 & 3 \\ 3 & -2\end{array}\right)$
d $\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$ e $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$
6 a Half-turn about the origin.
b Reflection in $y=-x$.
c Clockwise quarter-turn about the origin.

Answers to AH Maths (MiA), pg. 253-5, Ex. 13.11

1 a $x+y=0$
b $x+2 y=0$
c $x+y=0$
d $3 x+5 y=0$
e $x+2 y=0$
2 a $y=2 x^{2}+2 x$
b $7 x-4 y+5=0$

Answers to AH Maths (MiA), pg. 255-5, Ex. 13.12
1 a i $\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$
ii $\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
iiii $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$
iv $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$
b i $(-a,-b)$ ii $(-a,-b)$ c No
3 a i $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right) \quad$ ii $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
b $\quad F G=-G F$ (Quarter-turn in opposite direction)
4 a i $\left(\begin{array}{rr}\cos A^{\circ} & -\sin A^{\circ} \\ \sin A^{\circ} & \cos A^{\circ}\end{array}\right) \quad$ ii $\left(\begin{array}{rr}\cos B^{\circ} & -\sin B^{\circ} \\ \sin B^{\circ} & \cos B^{\circ}\end{array}\right)$
iii $\left(\begin{array}{rr}\cos (A+B)^{\circ} & -\sin (A+B)^{\circ} \\ \sin (A+B)^{\circ} & \cos (A+B)^{\circ}\end{array}\right)$
b $\cos (A+B)=\cos A \cos B-\sin A \sin B$ $\sin (A+B)=\sin A \cos B+\cos A \sin B$
(The composition of two rotations is a rotation.)

