7 / 2 / 18

Matrices and Systems of Equations - Lesson 7

Transformation Matrices

LI

- Know Basic Transformation Matrices.
- Find Image Points under a transformation.
- Find Invariant Points.
- Find Composite Transformations.
- Find Equations of Transformed Curves.

<u>SC</u>

- Matrix multiplication.
- 2 x 2 inverses.

A geometrical transformation is a way of changing points in space

A linear transformation in the plane is a function that sends a point P(x,y) to Q(ax + by, cx + dy)(a, b, c, d $\in \mathbb{R}$); the function is described by a 2 x 2 transformation matrix:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
Q
P

A transformation matrix is obtained by looking at where the geometrical transformation sends the points (1,0) and (0,1)

Rasic	Trans	form	ation	Matrices
Dusic	11 uns	101111	anon	Mullices

Geometrical Transformation	Transformation Matrix	
Reflection in x - axis	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	
Reflection in y - axis	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	
Reflection in line $y = x$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	
Anticlockwise rotation of angle θ about origin	$ \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right) $	
Scaling (aka Dilatation)	$\left(egin{array}{ccc} k & 0 \\ 0 & k \end{array} ight)$ $(k \in \mathbb{R})$ $(k > 1: enlargement)$ $(k < 1: reduction)$	

A composite transformation is a combination of at least 2 basic transformations; they are found by matrix multiplication

An invariant point is a point whose coordinates stay the same under a transformation

Find the matrix associated with the transformation,

$$x' = 2 x + 5 y, y' = x - 3 y.$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2x + 5y \\ x - 3y \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 1 - 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Transformation matrix: $\begin{pmatrix} 2 & 5 \\ 1 & -3 \end{pmatrix}$

Find the image of the point P (3, -1) under the transformation associated with the matrix $\begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix}$.

$$\begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 9 \end{pmatrix}$$

Image of
$$P: \begin{pmatrix} 5 \\ 9 \end{pmatrix}$$

Find the transformation matrix associated with a reflection in the x - axis followed by an anticlockwise rotation of 90° about the origin.

The order in which the transformations are done is important, as the order in which matrices are multiplied is important. Let the reflection matrix be denoted by T_R and the rotation matrix by T_θ . The required matrix is $T_\theta T_R$, as T_R acts first on point (x,y), then T_θ acts on the result of this.

$$T_{\theta} T_{R} = \begin{pmatrix} \cos 90^{\circ} - \sin 90^{\circ} \\ \sin 90^{\circ} \cos 90^{\circ} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\Rightarrow \qquad \mathsf{T}_{\theta}\,\mathsf{T}_{\mathsf{R}} \;=\; \left(\begin{array}{cc} \mathsf{O} & -1 \\ \mathsf{1} & \mathsf{O} \end{array}\right) \left(\begin{array}{cc} \mathsf{1} & \mathsf{O} \\ \mathsf{O} & -1 \end{array}\right)$$

$$\Rightarrow \qquad \mathsf{T}_{\theta} \; \mathsf{T}_{\mathsf{R}} \; = \; \left(\begin{array}{cc} \mathsf{0} & \mathsf{1} \\ \mathsf{1} & \mathsf{0} \end{array} \right)$$

Find the invariant point(s) under the transformation matrix

$$\begin{pmatrix} -1 & 2 \\ 2 & 3 \end{pmatrix}$$
.

$$\begin{pmatrix} -1 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\left(\begin{array}{ccc} -x & + & 2y \\ 2x & + & 3y \end{array}\right) = \left(\begin{array}{c} x \\ y \end{array}\right)$$

Equating components gives,

$$-x + 2y = x \Rightarrow x = y$$

 $2x + 3y = y \Rightarrow x = -y$

Hence, x = 0 and y = 0.

Invariant point: (0,0)

Find the image of the curve $y = 3 x^2$ under the

transformation with matrix $\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$.

Let a typical image point have coordinates (x', y'). Then,

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\therefore \qquad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

$$\Rightarrow \qquad \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} -3 & 2 \\ 2 & -1 \end{array}\right) \left(\begin{array}{c} x' \\ y' \end{array}\right)$$

$$\Rightarrow \qquad \left(\begin{matrix} x \\ y \end{matrix}\right) = \left(\begin{matrix} -3x' + 2y' \\ 2x' - y' \end{matrix}\right)$$

$$y = 3x^2$$

$$\therefore 2 x' - y' = 3 (-3 x' + 2 y')^{2}$$

AH Maths - MiA (2nd Edn.)

- pg. 251-2 Ex. 13.10
 Q 1, 2 a, b, e, 3, 6 a, b, c.
- pg. 253-5 Ex. 13.11 Q 1, 2 a, b.
- pg. 255-6 Ex. 13.12 Q 1, 3, 4.

Ex. 13.10

1 In each of these, find the image of the point P under the transformation with the associated matrix A.

a
$$P(1, 2); A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

b P(3, 4);
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$$

c
$$P(-1, 2); A = \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}$$

2 The triangle ABC has vertices A(1, 1), B(2, 3) and C(-1, 4). Work out its image under the transformation associated with each of these matrices.

a
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 reflection in $y = x$

a
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 reflection in $y = x$ b $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ reflection in $x = 0$ e $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ enlargement $(\times 2)$

e
$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 enlargement (× 2)

3 A transformation maps (a, b) onto (a', b').

$$(a, b) \rightarrow (a', b')$$
 where $a' = 2a + 3b, b' = a - 2b$

The matrix associated with such a mapping is $\begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$.

In a similar way, find the matrix associated with each of these mappings.

a
$$(a, b) \rightarrow (a', b')$$
 where $a' = 2a + b, b' = -2a + b$

b
$$(a, b) \rightarrow (a', b')$$
 where $a' = 3a - 4b, b' = 2a + 3b$

c
$$(a,b) \rightarrow (5a + 3b, 3a - 2b)$$

d
$$(a,b) \rightarrow (a+b,a-b)$$

e
$$(a,b) \rightarrow (-b,-a)$$

6 Describe in words the transformation associated with

Ex. 13.11

1 Find all the invariant points of the transformation associated with these matrices.

a
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

a $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ b $B = \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$ c $C = \begin{pmatrix} 2 & 1 \\ 7 & 8 \end{pmatrix}$ d $D = \begin{pmatrix} 4 & 5 \\ 3 & 6 \end{pmatrix}$

 $E = \begin{pmatrix} 3 & 4 \\ 3 & 7 \end{pmatrix}$

2 Find the equation of the image of each curve under the mapping with the given associated matrix.

a
$$y = x^2$$
, $A = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}$

a
$$y = x^2$$
, $A = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}$ b $y = 2x + 1$, $B = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$

Ex. 13.12

- 1 Let X denote reflection in the x-axis, and Y denote reflection in the y-axis.
 - a Write the matrix associated with i X ii Y iii XY iv YX
 - b Write the image of P(a, b) after the transformation i XY ii YX
 - c Considering the geometry, is it a surprise that the image is the same in both cases?
- **3** Let *F* denote reflection in the *x*-axis, and *G* denote reflection in the line y = x.
 - a Find the matrix associated with i GF ii FG
 - b Explain briefly (geometrically) why $GF \neq FG$.
- As already stated, the matrix $\begin{pmatrix} \cos \theta^{\circ} & -\sin \theta^{\circ} \\ \sin \theta^{\circ} & \cos \theta^{\circ} \end{pmatrix}$ is associated with an anticlockwise rotation of θ° about the origin.
 - a Write the matrices P, Q and R respectively associated with an anticlockwise rotation about the origin of i A° ii B° iii (A + B)°
 - b By expanding PQ and equating its entries with those of R, find well-known expansions for sin(A + B) and cos(A + B).

Explain why equating entries is valid.

Answers to AH Maths (MiA), pg. 251-2, Ex. 13.10

1 a
$$(1,4)$$
 b $(7,6)$ c $(-11,2)$

$$c (-11, 2)$$

2 a
$$A'(1,1), B'(3,2), C'(4,-1)$$

b
$$A'(-1,1), B'(-2,3), C'(1,4)$$

e
$$A'(2,2), B'(4,6), C'(-2,8)$$

3 a
$$\begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix}$$
 b $\begin{pmatrix} 3 & -4 \\ 2 & 3 \end{pmatrix}$ c $\begin{pmatrix} 5 & 3 \\ 3 & -2 \end{pmatrix}$

b
$$\begin{pmatrix} 3 & -4 \\ 2 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 3 \\ 3 & -2 \end{pmatrix}$$

d
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

d
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 e $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

- 6 a Half-turn about the origin.
 - **b** Reflection in y = -x.
 - c Clockwise quarter-turn about the origin.

Answers to AH Maths (MiA), pg. 253-5, Ex. 13.11

1 **a**
$$x + y = 0$$

b
$$x + 2y = 0$$

$$c \quad x + y = 0$$

1 a
$$x + y = 0$$
 b $x + 2y = 0$ c $x + y = 0$ d $3x + 5y = 0$

$$\mathbf{e} \quad x + 2y = 0$$

2 a
$$y = 2x^2 + 2x$$

2 a
$$y = 2x^2 + 2x$$
 b $7x - 4y + 5 = 0$

Answers to AH Maths (MiA), pg. 255-5, Ex. 13.12

1 a i
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 ii $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ iii $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ iv $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

b i
$$(-a, -b)$$
 ii $(-a, -b)$ **c** No

3 a i
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 ii $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

b FG = -GF (Quarter-turn in opposite direction)

4 a i
$$\begin{pmatrix} \cos A^{\circ} & -\sin A^{\circ} \\ \sin A^{\circ} & \cos A^{\circ} \end{pmatrix}$$
 ii $\begin{pmatrix} \cos B^{\circ} & -\sin B^{\circ} \\ \sin B^{\circ} & \cos B^{\circ} \end{pmatrix}$

iii
$$\begin{pmatrix} \cos{(A+B)^{\circ}} & -\sin{(A+B)^{\circ}} \\ \sin{(A+B)^{\circ}} & \cos{(A+B)^{\circ}} \end{pmatrix}$$

b
$$\cos (A + B) = \cos A \cos B - \sin A \sin B$$

 $\sin (A + B) = \sin A \cos B + \cos A \sin B$
(The composition of two rotations is a rotation.)