

A function f is given **explicitly** (f is an **explicit function**) if the output value y is given in terms of the input value.

An explicit function is recognised when y is given as a function of x.

Examples of Explicit Functions

y = sin x

 $y = x^3$

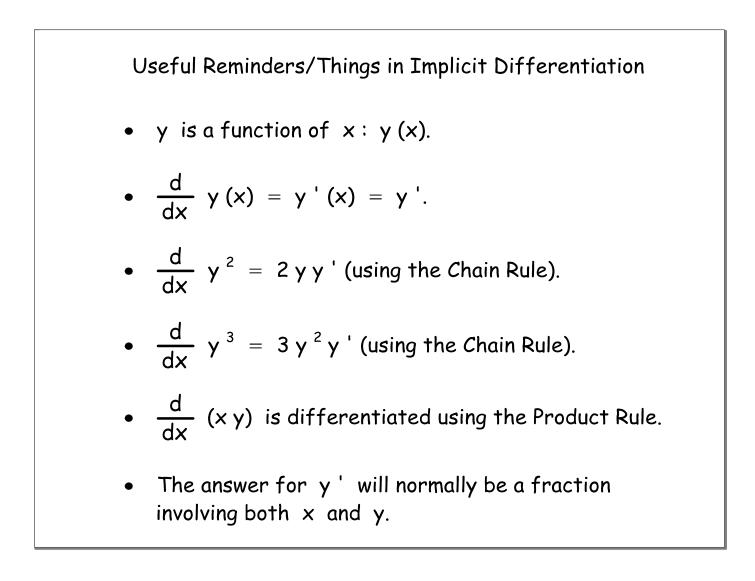
A function f is given **implicitly** (f is an **implicit function**) if the output value y is not given in terms of the input value.

An implicit function is usually identified when the variables x and y are mixed up in a higgledy-piggledy manner.

An implicitly defined function may or may not be solved for y.

Examples of Implicit Functions

y - sin x = 0 x² + y² = 36 y sin y + x = 4 cos x



Example 1

Find the gradient of the tangent at any point on the curve defined by $x^4 - 3xy + y^3 = 13$. $x^{4} - 3xy + y^{3} = 13$ $4 x^{3} - 3 (1 \cdot y + x \cdot y') + 3 y^{2} y' = 0$ · . $4 x^{3} - 3 y - 3 x y' + 3 y^{2} y' = 0$ \Rightarrow $4x^{3} - 3y + y'(3y^{2} - 3x) = 0$ \Rightarrow $y'(3y^2 - 3x) = 3y - 4x^3$ \Rightarrow $y' = \frac{3y - 4x^3}{3y^2 - 3x}$ \Rightarrow

Example 2

 \Rightarrow

 \Rightarrow

Find the equation of the tangent to the curve defined by $x y + y^2 = 6$ at y = 1.

$$xy + y^{2} = 6$$

$$\therefore (1 \cdot y + xy') + 2yy' = 0$$

$$\Rightarrow y + xy' + 2yy' = 0$$

$$\Rightarrow y + y'(x + 2y) = 0$$

$$\Rightarrow y'(x + 2y) = -y$$

$$y' = -\frac{y}{x + 2y}$$

To find the gradient, we need an (x, y) coordinate. y = 1 in the equation $xy + y^2 = 6$ gives x = 5. $\therefore \qquad y'_{(5,1)} = -\frac{1}{5+2}$

$$y'_{(5,1)} = -1/7 = m$$

When finding the 2nd derivative of an implicit function, it is better not to use the answer for the 1st derivative and then to differentiate that (because this involves the quotient rule)

Instead, it is better to use a line of working in obtaining the 1st derivative that has no fractional terms and differentiate that, rearrange and then solve for the 2nd derivative

Example 3
Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ for the function defined
implicitly by $x^3 + 2xy = 7$.
Use the shorthand y' for $\frac{dy}{dx}$ and y'' for $\frac{d^2y}{dx^2}$.
 $x^3 + 2xy = 7$
 $\therefore 3x^2 + 2(1.y + xy') = 0$
 $\Rightarrow 3x^2 + 2y + 2xy' = 0$
 $\Rightarrow 2xy' = -3x^2 - 2y$
 $\Rightarrow 2xy' = -3x^2 - 2y$
 $\Rightarrow y' = \frac{-(3x^2 + 2y)}{2x}$
Differentiate \star wrt x to get (after some
simplification):
 $6x + 4y' + 2xy'' = 0$
 $\therefore 6x - 4\left(\frac{3x^2 + 2y}{2x}\right) = -2xy''$
 $\Rightarrow \frac{12x^2 - 12x^2 - 8y}{2x} = -2xy''$
 $\Rightarrow \frac{-8y}{2x} = -2xy''$
 $\Rightarrow \frac{-8y}{2x} = -2xy''$

