Differential Calculus - Lesson 6

The Chain Rule

LI

- Differentiate a composition of functions.

SC

- The Chain Rule.

Reminder on Composition

If f and g are functions, the composition of f with g, usually written $f(g(x)$) ('f of g of x ') is the function obtained by taking the output of g (which is $g(x)$) and using this as the input of f.

Generally speaking, $f(g(x))$ is not the same as $g(f(x))$.
Composition Example 1
If $f(x)=x^{2}$ and $g(x)=x+3$, then:
$f(g(x))=f(x+3)=(x+3)^{2}$ and
$g(f(x))=g\left(x^{2}\right)=x^{2}+3$
Composition Example 2
If $f(x)=\sin x$ and $g(x)=x-7$, then:
$f(g(x))=f(x-7)=\sin (x-7)$ and
$g(f(x))=g(\sin x)=(\sin x)-7$

Composition Example 3

If $f(x)=x^{3}$ and $g(x)=\cos x$, then:
$f(g(x))=f(\cos x)=(\cos x)^{3}=\cos ^{3} x$ and
$g(f(x))=g\left(x^{3}\right)=\cos \left(x^{3}\right)$

The Chain Rule

The Chain Rule tells us how to differentiate a composition of functions

Lagrange Form

$$
\begin{aligned}
& \text { If } y=f(g(x)) \text {, then, } \\
& y^{\prime}=f^{\prime}(g(x)) \times g^{\prime}(x)
\end{aligned}
$$

(y dashed equals f dashed of $g(x)$ multiplied by g dashed of x)
Leibniz Form

$$
\begin{aligned}
& \text { If } y=f(g(x)) \text {, then letting } u=g(x) \text {, we have that } \\
& y=f(u) \text { and } u=g(x) \text { (i.e., } y \text { is a function of } u \\
& \text { and } u \text { is a function of } x \text {); then, } \\
& \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
\end{aligned}
$$

Example 1

Differentiate $y=(3 x+4)^{5}$.

$$
\begin{array}{rlrl}
& & y & =(3 x+4)^{5} \\
& \therefore & y^{\prime} & =5(3 x+4)^{5-1} \cdot \frac{d}{d x}(3 x+4) \\
\Rightarrow & y^{\prime} & =5(3 x+4)^{4} \cdot 3 \\
\Rightarrow & y^{\prime} & =15(3 x+4)^{4}
\end{array}
$$

Example 2

Differentiate $y=(7-2 x)^{6}$.

$$
\begin{array}{rlrl}
& y & =(7-2 x)^{6} \\
\therefore & & y^{\prime} & =6(7-2 x)^{6-1} \cdot \frac{d}{d x}(7-2 x) \\
\Rightarrow & y^{\prime} & =6(7-2 x)^{5} \cdot(-2) \\
\Rightarrow & y^{\prime} & =-12(7-2 x)^{5}
\end{array}
$$

Example 3

$$
\begin{aligned}
& \text { Differentiate } y=\frac{1}{(8 x+1)^{3}} \\
& y=\frac{1}{(8 x+1)^{3}} \\
& y=(8 x+1)^{-3} \\
& \therefore \quad y^{\prime}=-3(8 x+1)^{-3-1} \cdot \frac{d}{d x}(8 x+1) \\
& \Rightarrow \quad y^{\prime}=-3(8 x+1)^{-4} \cdot 8 \\
& \Rightarrow \quad y^{\prime}=-24(8 x+1)^{-4} \\
& \left.y y^{\prime}=-\frac{24}{(8 x+1)^{4}}\right)
\end{aligned}
$$

Example 4

$$
\begin{gathered}
\text { Differentiate } y=\frac{1}{14(6 x-5)^{4}} \\
\qquad y=\frac{1}{14(6 x-5)^{4}} \\
y=\frac{1}{14}(6 x-5)^{-4}
\end{gathered} .
$$

$\therefore \quad y^{\prime}=-\frac{4}{14}(6 x-5)^{-4-1} \cdot \frac{d}{d x}(6 x-5)$
$\Rightarrow \quad y^{\prime}=-\frac{4}{14}(6 x-5)^{-5} \cdot 6$
$\Rightarrow \begin{array}{r}y^{\prime}=-\frac{12}{7}(6 x-5)^{-5} \\ \left(y^{\prime}=-\frac{12}{7(6 x-5)^{5}}\right.\end{array}$

Example 5

Differentiate $y=\left(x^{3}-6 x+2\right)^{9}$.

$$
\begin{aligned}
& y=\left(x^{3}-6 x+2\right)^{9} \\
& \therefore \quad y^{\prime}=9\left(x^{3}-6 x+2\right)^{8} \cdot \frac{d}{d x}\left(x^{3}-6 x+2\right) \\
& \Rightarrow \quad y^{\prime}=9\left(x^{3}-6 x+2\right)^{8} \cdot\left(3 x^{2}-6\right) \\
& \Rightarrow \quad y^{\prime}=9\left(3 x^{2}-6\right)\left(x^{3}-6 x+2\right)^{8} \\
&\left(y^{\prime}=27\left(x^{2}-2\right)\left(x^{3}-6 x+2\right)^{8}\right)
\end{aligned}
$$

Example 6

Differentiate $y=\sqrt[4]{(17-2 x)^{3}}$.

$$
\begin{aligned}
y & =\sqrt[4]{(17-2 x)^{3}} \\
y & =(17-2 x)^{3 / 4} \\
\therefore \quad y^{\prime} & =\frac{3}{4}(17-2 x)^{3 / 4-1} \cdot \frac{d}{d x}(17-2 x) \\
\Rightarrow \quad y^{\prime} & =\frac{3}{4}(17-2 x)^{-1 / 4} \cdot(-2) \\
\Rightarrow \quad y^{\prime} & =-\frac{3}{2}(17-2 x)^{-1 / 4} \\
y^{\prime} & \left.=-\frac{3}{2(17-2 x)^{1 / 4}}\right) \\
y^{\prime} & \left.=-\frac{3}{2 \sqrt[4]{17-2 x}}\right)
\end{aligned}
$$

Example 7

Differentiate $y=4 \cos (2 x)$.

$$
\begin{aligned}
& y=4 \cos (2 x) \\
& \therefore \quad y^{\prime}=4(-\sin (2 x)) \cdot \frac{d}{d x}(2 x) \\
& \Rightarrow \quad y^{\prime}=-4 \sin (2 x) \cdot 2 \\
& \Rightarrow \quad y^{\prime}=-8 \sin (2 x)
\end{aligned}
$$

Example 8

Differentiate $y=\sin (3 x+2)$.

$$
\begin{aligned}
& y=\sin (3 x+2) \\
\therefore & y^{\prime}=\cos (3 x+2) \cdot \frac{d}{d x}(3 x+2) \\
\Rightarrow & y^{\prime}=\cos (3 x+2) \cdot 3 \\
\Rightarrow & y^{\prime}=3 \cos (3 x+2)
\end{aligned}
$$

Example 9

Differentiate $y=\sin ^{5} x$.

$$
\begin{aligned}
y & =\sin ^{5} x \\
y & =(\sin x)^{5} \\
\therefore \quad y^{\prime} & =5(\sin x)^{5-1} \cdot \frac{d}{d x}(\sin x) \\
\Rightarrow \quad y^{\prime} & =5(\sin x)^{4} \cdot \cos x \\
\Rightarrow \quad y^{\prime} & =5 \sin ^{4} x \cos x
\end{aligned}
$$

Example 10
Differentiate $y=\frac{1}{\cos x}$.

$$
\begin{aligned}
y & =\frac{1}{\cos x} \\
y & =(\cos x)^{-1} \\
\therefore \quad y^{\prime} & =-(\cos x)^{-1-1} \cdot \frac{d}{d x}(\cos x) \\
\Rightarrow \quad y^{\prime} & =-(\cos x)^{-2} \cdot(-\sin x) \\
\Rightarrow \quad y^{\prime} & =(\cos x)^{-2} \sin x \\
y^{\prime} & \left.=\frac{\sin x}{\cos ^{2} x}\right)
\end{aligned}
$$

Example 11

Differentiate $y=\sin (\cos x)$.

$$
\begin{aligned}
& y & =\sin (\cos x) \\
\therefore & y^{\prime} & =\cos (\cos x) \cdot \frac{d}{d x}(\cos x) \\
\Rightarrow & y^{\prime} & =\cos (\cos x) \cdot(-\sin x) \\
\Rightarrow & y^{\prime} & =-\sin x \cos (\cos x)
\end{aligned}
$$

Cf Higher Maths

$$
\begin{aligned}
& \text { - pg. 232-234 Ex. 9G } \\
& \text { Q } 1-4,5 \mathrm{i}-\mathrm{q}, 6
\end{aligned}
$$

$$
\begin{aligned}
& \text { - pg. 235-237 Ex. 9H } \\
& \text { Q1-5,6 add, } 13 \mathrm{~d}
\end{aligned}
$$

Questions

1 Differentiate with respect to x
a $(x+4)^{3}$
b $(x-2)^{6}$
c $(x+3)^{9}$
d $(x-1)^{5}$
e $5(x+1)^{4}$
f $8(x-3)^{6}$
g $\frac{1}{2}(x+5)^{8}$
h $\frac{2}{7}(x-5)^{7}$
i $(x+2)^{-1}$
j $(x-5)^{-4}$
k $(x+6)^{-7}$
I $(x-3)^{-4}$
m $4(x-2)^{-3}$
n $9(x-7)^{-2}$
o $\frac{3}{4}(x+1)^{-8}$
p $\frac{5}{6}(x-4)^{-9}$
q $\quad 6+(x-1)^{4}$
r $3-(x+4)^{5}$
s $2(x+2)^{9}-4 x^{3}$
t $6 \sqrt{x}+5(x-1)^{4}$
u $3(x+4)^{-1}-\frac{5}{x^{2}}$
v $\frac{4}{7 x^{3}}+8(x-4)^{-2}$

2 Differentiate with respect to x
a $(3 x+1)^{6}$
b $(5 x-2)^{4}$
c $(2 x-7)^{5}$
d $(4 x+1)^{9}$
e $2(3 x-4)^{7}$
f $10(6 x+2)^{3} \quad$ g $\quad 8(5 x-4)^{8}$
h $6(7 x-1)^{4}$
i $(4 x-1)^{-2} \quad \mathbf{j}(2 x+5)^{-8} \quad \mathbf{k} \quad(9 x-2)^{-1} \quad$ I $(5 x+4)^{-6}$
m $3(2 x-1)^{-4}$
n $5(7 x+1)^{-2}$
o $(2 x+5)^{-3}-8 x$
p $\frac{1}{\sqrt[4]{x^{5}}}-4(3 x-1)^{-1} \mathbf{q}(x-4)^{-6}+\frac{4 x^{2}-1}{x} \quad$ r $\quad 3(8 x-1)^{-2}-\frac{4}{\sqrt{x}}$
s $\sqrt{x}\left(2 x-\frac{1}{x^{2}}\right)+6(4 x-1)^{-2} \quad$ t $\quad-2(3 x+4)^{-5}-\frac{2}{5 x^{10}}$

3 Differentiate with respect to x
a $(1-x)^{5}$
b $(5+x)^{-3}$
c $(3+7 x)^{4}$
d $\left(\frac{2}{3} x-4\right)^{6}$
e $(2-5 x)^{6}$
f $\left(\frac{3 x}{5}+2\right)^{10}$
g $\frac{(2-3 x)^{4}}{5}$
h $(6-x)^{-1}$
i $\quad 5(1-2 x)^{-3}-7 x^{2}$ j $\quad 6 x \sqrt{x}-\frac{(1-2 x)^{-4}}{8}$

4 Differentiate with respect to x
a $\frac{1}{(x+1)^{4}}$
b $\frac{1}{(x-5)^{2}}$
c $\frac{1}{(4 x+1)^{5}}$
d $\frac{1}{3 x-4}$
e $\frac{5}{x-3}$
f $\frac{2}{(x+1)^{3}}$
g $\frac{6}{(2 x-5)^{2}}$
h $\frac{8}{(5 x-1)^{6}}$
i $\frac{1}{3(x+2)}$
j $\frac{1}{4(x-1)^{2}}$
k $\frac{3}{2(x+1)^{4}}$
I $\frac{2}{9(3 x-2)^{5}}$
m $\frac{1}{2-x}$
n $\frac{8}{5-3 x}$
o $\frac{1}{(5-8 x)^{2}}$
p $\frac{9}{4(1-2 x)^{2}}$

5 Differentiate with respect to x
i $\frac{1}{(x-1)^{\frac{2}{3}}}$
j $\frac{1}{4(x+2)^{\frac{3}{2}}}$
k $\sqrt[3]{(x-4)^{2}}$
I $\sqrt{(6 x+1)^{5}}$
m $\frac{1}{\sqrt{x+2}}$
n $\frac{8}{\sqrt[4]{(x-3)^{3}}}$
o $\frac{1}{\sqrt[5]{4-x}}$
p $6\left(\sqrt{(2-5 x)^{3}}\right.$
q $\frac{4}{\sqrt[4]{(5-2 x)^{3}}}$

6 Differentiate with respect to x
a $\left(x^{2}-3\right)^{4}$
b $\left(x^{3}-2 x^{2}+1\right)^{5}$
c $\left(x^{4}-5 x-2\right)^{3}$
d $\left(4-3 x^{2}\right)^{6}$
e $\left(2 x^{2}+5 x-3\right)^{-1}$
f $\left(3-2 x-x^{3}\right)^{-4}$
g $\frac{1}{x^{2}-5}$
h $\sqrt{2 x^{2}-x+5}$
i $\frac{1}{\sqrt{2-3 x^{3}}}$
j $\sqrt{\left(x^{4}-1\right)^{3}}$
k $\sqrt[3]{\left(x^{3}+x^{2}+x+1\right)}$
I $(\sqrt{x}-2)^{6}$

Answers

$$
\begin{aligned}
& 1 \text { a } 3(x+4)^{2} \\
& \text { b } 6(x-2)^{5} \\
& \text { c } \quad 9(x+3)^{8} \\
& \text { d } 5(x-1)^{4} \\
& \text { e } \quad 20(x+1)^{3} \\
& \text { f } 48(x-3)^{5} \\
& \text { g } 4(x+5)^{7} \\
& \text { h } 2(x-5)^{6} \\
& \text { i }-\frac{1}{(x+2)^{2}} \\
& \text { j } \quad-\frac{4}{(x-5)^{5}} \\
& \text { k }-\frac{7}{(x+6)^{8}} \\
& \text { I }-\frac{4}{(x-3)^{5}} \\
& 2 \text { a } 18(3 x+1)^{5} \\
& \text { b } \quad 20(5 x-2)^{3} \\
& \text { c } 10(2 x-7)^{4} \\
& \text { d } 36(4 x+1)^{8} \\
& \text { e } \quad 42(3 x-4)^{6} \\
& \text { f } 180(6 x+2)^{2} \\
& \text { g } 320(5 x-4)^{7} \\
& \text { h } 168(7 x-1)^{3} \\
& \text { i }-\frac{8}{(4 x-1)^{3}} \\
& \text { j } \quad-\frac{16}{(2 x+5)^{9}} \\
& \text { k }-\frac{9}{(9 x-2)^{2}} \\
& \text { I }-\frac{30}{(5 x+4)^{7}} \\
& \text { m }-\frac{12}{(x-2)^{4}} \\
& \text { n }-\frac{18}{(x-7)^{3}} \\
& \text { m }-\frac{24}{(2 x-1)^{5}} \\
& \text { o }-\frac{6}{(x+1)^{9}} \\
& \text { n }-\frac{70}{(7 x+1)^{3}} \\
& \text { p }-\frac{15}{2(x-4)^{10}} \\
& \text { o }-\frac{6}{(2 x+5)^{4}}-8 \\
& \text { q } 4(x-1)^{3} \\
& \text { r }-5(x+4)^{4} \\
& \text { s } \quad 18(x+2)^{8}-12 x^{2} \\
& \text { p }-\frac{5}{4 x^{\frac{9}{4}}}+\frac{12}{(3 x-1)^{2}} \\
& \text { q } \quad 4-\frac{6}{(x-4)^{7}}+\frac{1}{x^{2}} \\
& \text { r } \frac{2}{x^{\frac{3}{2}}}-\frac{48}{(8 x-1)^{3}} \\
& \text { s } \frac{3}{2 x^{\frac{5}{2}}}+3 \sqrt{x}-\frac{48}{(4 x-1)^{3}} \\
& \text { t } \quad \frac{4}{x^{11}}+\frac{30}{(3 x+4)^{6}}
\end{aligned}
$$

4 a $-\frac{4}{(x+1)^{5}}$
b $-\frac{2}{(x-5)^{3}}$
c $-\frac{20}{(4 x+1)^{6}}$
d $-\frac{3}{(3 x-4)^{2}}$
e $-\frac{5}{(x-3)^{2}}$
f $-\frac{6}{(x+1)^{4}}$
g $-\frac{24}{(2 x-5)^{3}}$
h $-\frac{240}{(5 x-1)^{7}}$
i $-\frac{1}{3(x+2)^{2}}$
j $-\frac{1}{2(x-1)^{3}}$
k $-\frac{6}{(x+1)^{5}}$
l $-\frac{10}{3(3 x-2)^{6}}$
m $\frac{1}{(2-x)^{2}}$
n $\frac{24}{(5-3 x)^{2}}$
o $\frac{16}{(5-8 x)^{3}}$
p $\frac{9}{(1-2 x)^{3}}$
$5 \quad$ i $\quad-\frac{2}{3(x-1)^{\frac{5}{3}}}$
j $\quad-\frac{3}{8(x+2)^{\frac{5}{2}}}$
k $\frac{2}{3(x-4)^{\frac{1}{3}}}$
I $15(6 x+1)^{\frac{3}{2}}$
m $-\frac{1}{2(x+2)^{\frac{3}{2}}}$
n $-\frac{6}{(x-3)^{\frac{7}{4}}}$
o $\frac{1}{5(4-x)^{\frac{6}{5}}}$
p $-45(2-5 x)^{\frac{1}{2}}$
q $\frac{6}{(5-2 x)^{\frac{7}{4}}}$
g $-\frac{2 x}{\left(x^{2}-5\right)^{2}}$
h $\frac{4 x-1}{2 \sqrt{2 x^{2}-x+5}}$
i $\frac{9 x^{2}}{2\left(2-3 x^{3}\right)^{\frac{3}{2}}}$
j $6 x^{3} \sqrt{x^{4}-1}$
k $\frac{3 x^{2}+2 x+1}{3\left(x^{3}+x^{2}+x+1\right)^{\frac{2}{3}}}$
I $\frac{3(\sqrt{x}-2)^{5}}{\sqrt{x}}$
6 a $8 x\left(x^{2}-3\right)^{3}$
b $5\left(3 x^{2}-4 x\right)\left(x^{3}-2 x^{2}+1\right)^{4}$
c $3\left(4 x^{3}-5\right)\left(x^{4}-5 x-2\right)^{2}$
d $-36 x\left(4-3 x^{2}\right)^{5}$
e $-\frac{4 x+5}{\left(2 x^{2}+5 x-3\right)^{2}}$
f $-\frac{4\left(-2-3 x^{2}\right)}{\left(-x^{3}-2 x+3\right)^{5}}$

Questions

1 Differentiate with respect to x
a $\sin 2 x$
b $\cos 5 x$
c $3 \sin 4 x$
d $6 \cos 3 x$
e $\cos \left(2 x+\frac{\pi}{6}\right)$
f $\sin (6 x-\pi)$
g $\frac{3}{2} \sin 4 x$
h $\frac{3}{5} \cos 10 x$
i $\frac{1}{3} \sin (6 x+2)$
j $-8 \cos \left(\frac{1}{4} x\right)$
k $\sin (2-x)$
I $-\frac{1}{3} \sin (1-9 x)$
m $\cos 5 x-2 \sin 3 x$
n $\sin x+8 \cos 3 x$
o $\sin 3 x-2 \cos x$
p $\frac{5}{4} \sin (2 x-\pi)-\cos \left(\frac{3}{2} x\right)$

2 a Find the gradient of the tangent to the curve $y=\sin 2 x$ at the point where $x=\frac{\pi}{6}$
b The function f is defined by $f(x)=2 \cos \left(x-\frac{\pi}{2}\right)$ Find $f^{\prime}\left(\frac{2 \pi}{3}\right)$
c A curve has equation $y=\cos 3 x$. Find the gradient of the curve at the point where $x=\frac{2 \pi}{9}$
d The function g is defined by $g(x)=4 \sin \left(\frac{1}{2} x\right)$. Find the rate of change of g when $x=\frac{\pi}{2}$
e Given $y=6 \cos \left(2 x+\frac{\pi}{6}\right)$, find $\frac{d y}{d x}$ when $x=\frac{3 \pi}{2}$
3 You will need a calculator for this question. Give your answers to 2 decimal places.
a Given $y=\sin 5 x$, find $\frac{d y}{d x}$ when $x=1$.
b The function h is defined by $h(x)=5 \cos (3 x-1)$. Evaluate $h^{\prime}(-3)$.
c Find the gradient of the tangent to the curve with equation $y=2 \sin (5-3 x)$ at the point where $x=\frac{\pi}{2}$
d The function f is defined by $f(x)=2 \cos (\pi-3 x)$. Find the rate of change of f when $x=-2$.

4 Differentiate with respect to x.
a $\sin ^{2} x$
b $\cos ^{3} x$
c $2 \sin ^{3} x$
d $5 \cos ^{6} x$
e $-\frac{1}{2} \sin ^{4} x$
f $\frac{6}{5} \cos ^{5} x$
g $(\sin x+\cos x)^{3}$
h $(\sin (2 x-1))^{5}$

5 Find the gradient of the tangent to the curve with equation $y=\sin ^{2} x$ at the point where $x=\frac{\pi}{4}$

6 Differentiate with respect to x.
a $\frac{1}{\sin x}$
b $\frac{3}{\cos x}$
c $\sqrt{\sin x}$
d $\frac{1}{\cos ^{2} x}$

13 Functions f and g are defined by $f(x)=\cos x$ and $g(x)=3 x^{2}-1$
d At the point where $x=\frac{2 \pi}{3}$, the tangent to the curve $y=g(f(x))$ is parallel to the straight line $a x-\sqrt{3} y=0$. Determine algebraically the value of a.

Answers

1 a	$2 \cos 2 x$	3	a	1.42
b	$-5 \sin 5 x$		b	-8.16
C	$12 \cos 4 x$		c	-5.75
d	$-18 \sin 3 x$		d	1.68
e	$-2 \sin \left(2 x+\frac{\pi}{6}\right)$	4	a	$2 \cos x \sin x$
f	$\cos (6 x-\pi)$		b	$-3 \sin x(\cos x)^{2}$
g	$6 \cos (4 x)$		c	$6 \cos x(\sin x)^{2}$
h	$-6 \sin (10 x)$		d	$-30 \sin x(\cos x)^{5}$
i	$2 \cos (6 x+2)$		e	$-2 \cos x(\sin x)^{3}$
j	$2 \sin \left(\frac{x}{4}\right)$		f	$-6 \sin x(\cos x)^{4}$
k	$-\cos (2-x)$		g	$3(\cos x-\sin x)(\cos x+\sin x)^{2}$
1	$3 \cos (1-9 x)$		h	$10 \cos (1-2 x)(\sin (2 x-1))^{4}$
m	$-6 \cos (3 x)-5 \sin (5 x)$	5	1	
n	$\cos x-24 \sin (3 x)$	6	a	$-\frac{\cos x}{\sin x} \frac{1}{\sin x}=-\frac{\cos x}{(\sin x)^{2}}$
0	$3 \cos 3 x+2 \sin x$		b	$3 \frac{\tan x}{\tan }$
p	$\frac{5}{2} \cos (2 x-\pi)+\frac{3}{2} \sin \left(\frac{3 x}{2}\right)$		b	$3 \frac{1}{\cos x}$
2 a	1		c	$\frac{\cos x}{2 \sqrt{\sin x}}$
b	-1		d	$2 \frac{\tan x}{(\cos x)^{2}}$
c	$-\frac{3 \sqrt{3}}{2}$			
d	$\sqrt{2}$	13	d	$\mathrm{a}=4.5$
e	6			

