27 / 10 / 16

Solving Trigonometric Equations - Lesson 6

Solving Other Trigonometric Equations Using Trigonometric Identities

LI

• Solve other trigonometric equations using trigonometric identities.

<u>SC</u>

- Addition Formulae.
- Solve linear trig. equations.

006 - Solving Other Trigonometric Equations Using Trigonometric Identities. Deteloclostr 25, 2016

Example 1

Solve $\cos x^{\circ} \cos 50^{\circ} - \sin x^{\circ} \sin 50^{\circ} = 0.5$ (0 $\leq x \leq 360$).

$$\cos x \circ \cos 50 \circ - \sin x \circ \sin 50 \circ = 0.5$$

$$\cos (x + 50)^{\circ} = 0.5$$

2 solutions expected

$$cos (x + 50)^{\circ} = 0.5$$
 $RAA = cos^{-1} (0.5)$
 $RAA = 60^{\circ}$

$$\therefore$$
 \times ° + 50 ° = 60 °, 360 ° - 60 °

$$\Rightarrow$$
 \times ° + 50 ° = 60 °, 300 °

$$\Rightarrow$$
 $x^{\circ} = 10^{\circ}, 250^{\circ}$

Example 2 (non-calculator)

Show that $(\cos x - \sin x)^2 = 1 - \sin 2x$ and thus solve the equation,

$$(\cos x - \sin x)^2 = 0.5 \quad (0 \le x \le 2\pi)$$

LHS =
$$(\cos x - \sin x)^2$$

= $\cos^2 x + \sin^2 x - 2\sin x \cos x$
= $1 - 2\sin x \cos x$
= $1 - \sin 2x$
= RHS

$$(\cos x - \sin x)^2 = 1 - \sin 2x$$

4 solutions expected

$$\sin 2x = 0.5$$

$$RAA = \sin^{-1}(0.5)$$

$$\Rightarrow RAA = \pi/6$$

$$\sin is + ve$$

$$\frac{S_{\pi-RAA}}{S_{\pi-RAA}} = \frac{A_{RAA}}{S_{\pi-RAA}} = \frac{A_{RAA}}{S_{\pi$$

pg. 200 Ex. 8I All Q