15 / 11 / 17
 Unit 2 : Sequences and Series - Lesson 6

 Power Series

 Power Series}

LI

- Know what a Power Series is.
- Find the sum to infinity of a power series.

SC

- Difference of partial sums technique.
- Sum to infinity of a geometric series.

An infinite series is convergent if the sum to infinity exists; otherwise it is divergent

A power series is an infinite series of the form :
$\sum_{r=0}^{\infty} a_{r} x^{r}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$
where x is regarded as a variable and all the $a_{r} \in \mathbb{R}$ and do not depend on x

The convergence or divergence of a power series is dependent on the value of x

A power series converges if:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x}{a_{n}}\right|<1$

Useful Result

$$
\text { If }|x|<1, \text { as } n \rightarrow \infty, n x^{n} \rightarrow 0
$$

Example 1

Find the sum to infinity of the series given by
$S=1+3 x+5 x^{2}+7 x^{3}+\ldots+(2 n-1) x^{n-1}+\ldots$
and find for which x values it is convergent.

$$
S=1+3 x+5 x^{2}+7 x^{3}+\ldots+(2 n-1) x^{n-1}+\ldots
$$

The $n^{\text {th }}$ partial sum of S is,

$$
\begin{aligned}
& S_{n}=1+3 x+5 x^{2}+7 x^{3}+\ldots+(2 n-1) x^{n-1} \\
\therefore & \quad x S_{n}=x+3 x^{2}+5 x^{3}+\ldots+(2 n-1) x^{n} \\
\Rightarrow & (1-x) S_{n}=1+2 x+2 x^{2}+\ldots+2 x^{n-1}-(2 n-1) x^{n} \\
\Rightarrow & (1-x) S_{n}=2+2 x+2 x^{2}+\ldots+2 x^{n-1}-(2 n-1) x^{n}-1 \\
\Rightarrow & (1-x) S_{n}=2\left(1+x+x^{2}+\ldots+x^{n-1}\right)-(2 n-1) x^{n}-1 \\
\Rightarrow & (1-x) S_{n}=\frac{2\left(1-x^{n}\right)}{1-x}-(2 n-1) x^{n}-1 \\
\Rightarrow & \quad S_{n}=\frac{2\left(1-x^{n}\right)-1(1-x)}{(1-x)^{2}}-\frac{(2 n-1) x^{n}}{1-x}
\end{aligned}
$$

If $|x|<1$, as $n \rightarrow \infty, x^{n} \rightarrow 0$ and $n x^{n} \rightarrow 0$; hence, taking the limit $n \rightarrow \infty$ in the above equation gives,

$$
\begin{aligned}
& S_{\infty}=\frac{2(1-0)-1(1-x)}{(1-x)^{2}}-0 \\
\Rightarrow \quad & S_{\infty}=\frac{2-1+x}{(1-x)^{2}} \\
\Rightarrow \quad & S_{\infty}=\frac{1+x}{(1-x)^{2}}(|x|<1)
\end{aligned}
$$

Example 2

Find the sum to infinity of the series given by
$S=1+3 x+7 x^{2}+15 x^{3}+\ldots$ and find for which x values it is convergent.

$$
\begin{array}{rlrl}
& S & =1+3 x+7 x^{2}+15 x^{3}+\ldots \\
\therefore & & x S & =x+3 x^{2}+7 x^{3}+15 x^{4}+\ldots \\
\Rightarrow & (1-x) S & =1+2 x+4 x^{2}+8 x^{3}+\ldots
\end{array}
$$

The RHS of the above is a geometric series with first term 1 and common ratio $2 x$; hence, it will converge when $|2 x|<1$ $\Rightarrow|x|<1 / 2$. So,

$$
(1-x) S=\frac{1}{1-2 x}
$$

$$
\Rightarrow \quad S=\frac{1}{(1-x)(1-2 x)} \quad(|x|<1 / 2)
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)
 - pg. 175 Ex. 10.3 Q 1 a-g.

Ex. 10.3

1 For each of these power series,
i find the sum to infinity
ii identify the values of x for which the sum to infinity is valid.
a $S=2+6 x+10 x^{2}+14 x^{3}+\ldots+(4 n-2) x^{n}+\ldots$
b $S=3+8 x+13 x^{2}+18 x^{3}+\ldots+(5 n-2) x^{n}+\ldots$
c $S=12+10 x+8 x^{2}+6 x^{3}+\ldots+(14-2 n) x^{n}+\ldots$
d $S=17+12 x+7 x^{2}+2 x^{3}+\ldots+(22-5 n) x^{n}+\ldots$
e $S=2+6 x+18 x^{2}+54 x^{3}+\ldots$
f $S=96+48 x+24 x^{2}+12 x^{3}+\ldots$
g $S=1+4 x+13 x^{2}+40 x^{3}+\ldots$

Answers to AH Maths (MiA), pg. 175, Ex. 10.3

$$
\begin{aligned}
1 & \text { a } & \text { i } & \frac{2(1+x)}{(1-x)^{2}} \\
\text { b } & \text { i } & \frac{3+2 x}{(1-x)^{2}} & \text { ii }
\end{aligned}-1<x<1 .
$$

