$5 / 9 / 16$
 Graphs of Related Functions - Lesson 6
 Logarithmic Graphs

LI

- Know the Logarithmic Function and Logarithmic Graphs.
- Know how exponential and logarithmic graphs are connected.
- Sketch related graphs of logarithmic functions.

SC

- Graphs of related functions.
- Rules of logarithms.

The Logarithmic Graph

For any $a>0$, the Logarithmic Function to Base a is the function $y=\log _{a} x$

For any a >0, the Logarithmic Graph to Base a is the graph of the logarithmic function $y=\log _{a} x$

How the Exponential and Logarithmic Graphs are Related

The logarithmic graph is obtained by reflecting the graph of the corresponding (same base) exponential function in the line $y=x$

Example 1

Sketch the graphs of $y=\log _{3} x$ and $y=\log _{1 / 2} x$ on separate diagrams, indicating where each graph crosses the y-axis.

Also indicate the coordinates $(d, 1)$ for $y=\log _{3} x$ and $(e, 1)$ for $y=\log _{1 / 2} x$.

The graph of $y=\log _{1 / 2} x$ is obtained by reflecting the graph of $y=(1 / 2)^{x}$ in the line $y=x$.

Example 2

Shown below is the graph of $y=\log _{2} x$.

Sketch the graph of $2 \log _{2}(x+3)$.
The coordinates transform thus :

$$
\begin{aligned}
& (1,0) \longrightarrow(1-3,0 \times 2)=(-2,0) \\
& (8,3) \longrightarrow(8-3,3 \times 2)=\underline{(5,6)}
\end{aligned}
$$

Example 3

The diagram shows the graph of $y=\log _{3} x$.

Use this to sketch the graphs of:
(a) $y=\log _{3} x^{2}$.
(b) $y=\log _{3}(1 / x)$.
(c) $y=\log _{3}(9 x)$.
(a) Using the rules of logarithms,

$$
y=\log _{3} x^{2}=2 \log _{3} x
$$

The coordinates transform thus :

$(3,1) \longrightarrow(3,1 \times 2)=\overline{(3,2)}$

(b) Using the rules of logarithms,

$$
y=\log _{3}(1 / x)=\log _{3} x^{-1}=-\log _{3} x
$$

The coordinates transform thus :
$(1,0) \longrightarrow(1,0 x-1)=(1,0)$
$(3,1) \longrightarrow(3,1 \times-1)=\underline{(3,-1)}$

(c) Using the rules of logarithms,

$$
\begin{aligned}
y=\log _{3}(9 x) & =\log _{3} 9+\log _{3} x \\
& =\log _{3} 3^{2}+\log _{3} x \\
& =2 \log _{3} 3+\log _{3} x \\
& =2+\log _{3} x
\end{aligned}
$$

The coordinates transform thus:
$(1,0) \longrightarrow(1,0+2)=\underline{(1,2)}$
$(3,1) \longrightarrow(3,1+2)=\underline{(3,3)}$

CfE Higher Maths

pg. 73 Ex. 3E All Q

