Determinants and Inverses of 3×3 Matrices

LI

- Calculate 3×3 Determinants.
- Calculate the Inverse of a 3×3 matrix.
- Solve systems of equations using inverses.
- Matrix Properties 3.

SC

- Primary school arithmetic.

$$
\begin{aligned}
& \text { The determinant of } A=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \text { is, } \\
& \operatorname{det} A=|A|=a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| \\
& \text { where }\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right| \text { is the determinant of }\left(\begin{array}{ll}
e & f \\
h & i
\end{array}\right) \text { etc. }
\end{aligned}
$$

A formula exists for the inverse of a 3×3 matrix, but it is very complicated; we instead use row reduction (as in Gaussian Elimination).

Finding the inverse of a 3×3 matrix A involves row-reducing the giant augmented matrix,

$$
(A \mid I)
$$

to the form,

$$
(I \mid B)
$$

Then $B=A^{-1}$.

The reason the preceding procedure works is explained thus :

$$
\begin{aligned}
A \underline{x} & =\underline{p} \quad(A \mid \underline{p}) \\
A^{-1} A \underline{x} & =A^{-1} \underline{p} \\
I \underline{x} & =A^{-1} \underline{p} \quad \longrightarrow \quad\left(I \mid A^{-1} \underline{p}\right)
\end{aligned}
$$

Choosing the vector p to be each of the three columns of the identity matrix, each \mathbf{p} picks out the columns of A^{-1}. The calculation is more convenient if we start with the whole identity matrix, instead of its separate columns.

Matrix Properties - 3

13) $|A B|=|A||B|$
14) $|k A|=k^{n}|A|$, if A has order $n \times n$
15) $\left|A^{\top}\right|=|A|$
16) $(A B)^{-1}=B^{-1} A^{-1}$
17) $(k A)^{-1}=(1 / k) A^{-1}$
18) $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$
19) $\left|A^{-1}\right|=1 /|A|$

Example 1

Find k so that $A=\left(\begin{array}{rrr}10 & k & 0 \\ k & 1 & 3 \\ -3 & 0 & 1\end{array}\right)$ is singular.

For singularity, we require $|A|=0$. So,

$$
\begin{aligned}
& 10\left|\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right|-k\left|\begin{array}{rr}
k & 3 \\
-3 & 1
\end{array}\right|+0\left|\begin{array}{rr}
k & 1 \\
-3 & 0
\end{array}\right|=0 \\
& \Rightarrow 10(1-0)-k(k+9)=0 \\
& \Rightarrow \\
& \Rightarrow 10-k^{2}-9 k=0 \\
& \Rightarrow k^{2}+9 k-10=0 \\
& \Rightarrow(k+10)(k-1)=0 \\
& k=-10, k=1
\end{aligned}
$$

Example 2

Find the inverse of $A=\left(\begin{array}{rrr}1 & 1 & 1 \\ 2 & -3 & -1 \\ 5 & 2 & 3\end{array}\right)$.

$$
\left(\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
2 & -3 & -1 & 0 & 1 & 0 \\
5 & 2 & 3 & 0 & 0 & 1
\end{array}\right)
$$

$$
\xrightarrow[R_{3} \rightarrow R_{3}-5 R_{1}]{R_{2} \rightarrow R_{2}-2 R_{1}}\left(\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & -5 & -3 & -2 & 1 & 0 \\
0 & -3 & -2 & -5 & 0 & 1
\end{array}\right)
$$

$$
\xrightarrow{R_{3} \rightarrow R_{3}-(3 / 5) R_{2}}\left(\begin{array}{rrc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & -5 & -3 & -2 & 1 & 0 \\
0 & 0 & -1 / 5 & -19 / 5 & -3 / 5 & 1
\end{array}\right)
$$

$$
\xrightarrow{R_{3} \rightarrow(-5) R_{3}}\left(\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & -5 & -3 & -2 & 1 & 0 \\
0 & 0 & 1 & 19 & 3 & -5
\end{array}\right)
$$

Example 3

Show that for an orthogonal matrix $A,|A|= \pm 1$.
If A is orthogonal,

$$
\begin{aligned}
& A A^{\top}=I \\
& \therefore \quad\left|A A^{\top}\right|=|I| \\
& \Rightarrow \quad|A|\left|A^{\top}\right|=|I| \\
& \Rightarrow \quad|A||A|=|I| \\
& \Rightarrow \quad|A|^{2}=1 \\
& \Rightarrow \quad|A|= \pm 1
\end{aligned}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 247-9 Ex. 13.9 Q 4, 5.
- pg. 275-6 Ex. 14.10

Q 1 a, e, $2 d, g$, .

Ex. 13.9

4 Evaluate each determinant.
a $\left|\begin{array}{rrr}2 & 1 & 3 \\ 4 & -2 & 5 \\ 3 & 6 & 8\end{array}\right|$
b $\left|\begin{array}{rrr}-1 & 2 & 1 \\ 3 & 4 & 5 \\ 2 & -7 & 3\end{array}\right|$
c $\left|\begin{array}{rrr}4 & 1 & 3 \\ 1 & 3 & 2 \\ 2 & -1 & 1\end{array}\right|$
$\mathrm{d}\left|\begin{array}{rrr}1 & 1 & 1 \\ 2 & -2 & 3 \\ -1 & -1 & -1\end{array}\right|$

5 Simplify each determinant.
$a\left|\begin{array}{rrr}a & b & c \\ 4 & 7 & -1 \\ 3 & -2 & 0\end{array}\right|$
b $\left|\begin{array}{rrr}p & 2 & 4 \\ q & -1 & 3 \\ r & 1 & -2\end{array}\right|$
$c\left|\begin{array}{rcr}1 & k & 2 \\ 4 & m & -1 \\ -3 & n & 2\end{array}\right|$
$\mathrm{d}\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & x & 0 \\ 1 & 0 & 1\end{array}\right|$

Ex. 14.10

1 Using elementary row operations, find the inverse of each of these non-singular matrices.

$$
\mathrm{a}\left(\begin{array}{rrr}
1 & 0 & 2 \\
4 & 1 & 1 \\
3 & 1 & 0
\end{array}\right) \quad \mathrm{e}\left(\begin{array}{rrr}
5 & 10 & 2 \\
1 & 5 & 2 \\
4 & 3 & -1
\end{array}\right)
$$

2 For each of these matrices A
i show that A is invertible [by showing $|A| \neq 0$]
ii find the inverse matrix, A^{-1}, by using elementary row operations.

$$
\mathrm{d}\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
2 & 1 & 4
\end{array}\right) \quad \mathrm{g}\left(\begin{array}{lll}
3 & 2 & 1 \\
5 & 6 & 4 \\
7 & 2 & 3
\end{array}\right) \quad \mathbf{h}\left(\begin{array}{rrr}
-1 & 4 & 1 \\
2 & -3 & 1 \\
1 & 2 & -1
\end{array}\right)
$$

