Definite Integrals

LI

- Evaluate definite integrals.

SC

- Integrate.
- Substitution.

The definite integral of a function $y=f(x)$ between lower limit a and upper limit b is written as,

$$
\int_{a}^{b} f(x) d x
$$

For specific numbers a and b, the definite integral gives a real number.

If $w(x)$ is the result of integrating $f(x)$, then the above is written as,

$$
[w(x)]_{a}^{b}
$$

This is then evaluated as,

$$
w(b)-w(a)
$$

Example 1 (Non-Calc)
Find $\int_{1}^{4}\left(4 x^{3}-2 x\right) d x$.

$$
\begin{aligned}
& \int_{1}^{4}\left(4 x^{3}-2 x\right) d x \\
= & {\left[x^{4}-x^{2}\right]_{1}^{4} } \\
= & \left(4^{4}-4^{2}\right)-\left(1^{4}-1^{2}\right) \\
= & (256-16)-(0) \\
= & 240
\end{aligned}
$$

Example 2 (Non-Calc)
Find $\int_{-2}^{0}(5 x+1)(3 x-2) d x$.

$$
\begin{aligned}
& \int_{-2}^{0}(5 x+1)(3 x-2) d x \\
= & \int_{-2}^{0}\left(15 x^{2}+3 x-10 x-2\right) d x \\
= & \int_{-2}^{0}\left(15 x^{2}-7 x-2\right) d x \\
= & {\left[5 x^{3}-\frac{7 x^{2}}{2}-2 x\right]_{-2}^{0} } \\
= & (0)-\left(5(-2)^{3}-\frac{7(-2)^{2}}{2}-2(-2)\right) \\
= & -(-40-14+4) \\
= & 50
\end{aligned}
$$

Example 3 (Non-Calc)
Find $\int_{-1}^{1}(2 x-1)^{3} d x$.

$$
\begin{aligned}
& \int_{-1}^{1}(2 x-1)^{3} d x \\
= & {\left[\frac{(2 x-1)^{4}}{4(2)}\right]_{-1}^{1} }
\end{aligned}
$$

$$
=\frac{1}{8}\left[(2 x-1)^{4}\right]_{-1}^{1}
$$

$$
=\frac{1}{8}\left((2(1)-1)^{4}-(2(-1)-1)^{4}\right)
$$

$$
=\frac{1}{8}(1-81)
$$

$$
=-10
$$

Example 4 (Non-Calc)
Find $\int_{-2}^{-3 / 4} \sqrt{1-4 x} d x$.

$$
\begin{aligned}
& \int_{-2}^{-3 / 4} \sqrt{1-4 x} d x \\
= & \int_{-2}^{-3 / 4}(1-4 x)^{1 / 2} d x \\
= & {\left[\frac{(1-4 x)^{3 / 2}}{3 / 2(-4)}\right]_{-2}^{-3 / 4} }
\end{aligned}
$$

$$
=-\frac{1}{6}\left[(\sqrt{1-4 x})^{3}\right]_{-2}^{-3 / 4}
$$

$$
=-\frac{1}{6}\left((\sqrt{1+3})^{3}-(\sqrt{1+8})^{3}\right)
$$

$$
=-\frac{1}{6}(8-27)
$$

$$
=\frac{19}{6}
$$

Example 5 (Non-Calc)
Find $\int_{0}^{\pi / 6} 8 \cos x d x$.

$$
\begin{aligned}
& \int_{0}^{\pi / 6} 8 \cos x d x \\
= & {[8 \sin x]_{0}^{\pi / 6} } \\
= & 8[\sin x]_{0}^{\pi / 6} \\
= & 8(\sin (\pi / 6)-\sin 0) \\
= & 8(1 / 2-0) \\
= & 4
\end{aligned}
$$

Example 6 (Non-Calc)
Find $\int_{\pi / 8}^{\pi / 4} 4 \sin 4 x d x$.

$$
\int_{\pi / 8}^{\pi / 4} 4 \sin 4 x d x
$$

$$
=\left[\frac{4(-\cos 4 x)}{4}\right]_{\pi / 8}^{\pi / 4}
$$

$$
=-[\cos 4 x]_{\pi / 8}^{\pi / 4}
$$

$$
=-(\cos \pi-\cos (\pi / 2))
$$

$$
=-(-1-0)
$$

$$
=1
$$

Example 7 (Cal)
Find $\int_{2}^{4} \frac{1}{5} \cos (3 x-1) d x$ to 2 s.f. .

$$
\begin{aligned}
& \int_{2}^{4} \frac{1}{5} \cos (3 x-1) d x \\
= & {\left[\frac{\sin (3 x-1)}{5(3)}\right]_{2}^{4} } \\
= & \frac{1}{15}[\sin (3 x-1)]_{2}^{4} \\
= & \frac{1}{15}(\sin 11-\sin 5) \\
= & -0.002737 \ldots \\
= & -0.0027(2 \text { s.f. })
\end{aligned}
$$

Example 8 (Talc)
Find $\int_{-3}^{\pi / 12}(5+\sin x) d x$ to $2 d$. p. .

$$
\begin{aligned}
& \int_{-3}^{\pi / 12}(5+\sin x) d x \\
= & {[5 x-\cos x]_{-3}^{\pi / 12} } \\
= & (5 \pi / 12-\cos (\pi / 12))-(-15-\cos (-3)) \\
= & 14.353 \ldots \\
= & 14.35(2 \text { d.p. })
\end{aligned}
$$

CfE Higher Maths

-pg. 286-7 Ex. 12A
Q 1, 2, 3 a-e, 4 d-f, 5, 7, 9.
-pg. 289-290 Ex. 12B
Q 2, 3 d-f, 4-6.

Questions

1 Evaluate these integrals.
a $\int_{1}^{3} 2 x+5 d x$
b $\int_{0}^{4} 6-2 x d x$
c $\int_{-2}^{1} 3 x^{2}+4 x-1 d x$
d $\int_{-1}^{2} 2 x^{4} d x$
e $\int_{-2}^{2} 4 x^{3}+x^{2}-3 x+2 d x$ f $\int_{0}^{6} 5-2 x^{2} d x$

2 Evaluate these integrals.
a $\int_{1}^{4}(x+2)(3 x+2) d x$
b $\int_{-2}^{1} x(2 x-1)^{2} d x$
c $\int_{-1}^{2}(x+1)\left(x^{2}-4\right) d x$
d $\int_{2}^{4}(x+1)\left(x^{2}+2 x-3\right) d x$ e $\int_{-3}^{3} 2 x^{2}(1-x)-3\left(x^{2}-2\right) d x$

3 Evaluate these integrals.
a $\int_{1}^{3} \frac{4}{x^{2}} d x$
b $\int_{3}^{4} \frac{1}{2 x^{3}} d x$
c $\int_{-2}^{-1} \frac{4}{3 x^{5}}-1 d x$
d $\int_{4}^{9} 3 \sqrt{x} d x$
e $\int_{1}^{4} \frac{2}{\sqrt{x}} d x$

4 Evaluate these integrals.
d $\int_{-3}^{-1}(2 x+3)^{5} d x$
e $\int_{0}^{1}(5 x-4)^{3} d x$
f $\int_{1}^{2} \frac{1}{8}(3 x-5)^{8} d x$

5 Evaluate these integrals.
a $\int_{1}^{3} \frac{x^{3}-2}{x^{2}} d x$
b $\int_{4}^{9} \sqrt{x}\left(2-\frac{1}{x}\right) d x$
c $\int_{-2}^{-1} \frac{1}{(1-x)^{3}} d x$
d $\int_{1}^{6} \sqrt{x+3} d x$
e $\int_{4}^{16} \frac{2}{x^{3}}-\frac{3}{4} \sqrt{x} d x$
f $\int_{6}^{8}\left(5-\frac{1}{2} x\right)^{3} d x$
g $\int_{-3}^{-1} 6-\frac{1}{2} x-\frac{1}{3 x^{2}} d x$
h $\int_{\frac{1}{2}}^{\frac{5}{3}} 8(x-1)^{3} d x$
i $\int_{\sqrt{2}}^{\sqrt{3}} x\left(x^{2}-1\right) d x$

7 Determine algebraically the values of k such that $\int_{-2}^{k} 4 x-3 d x=-15$.
9 Determine algebraically the negative value of p for which $\int_{0}^{3} \frac{7}{3(2 x+p)^{2}} d x=1$.

Answers

1 a 18
b 8
c 0
d 13.2
e $40 / 3$
f -114
4 d $-182 / 3$
e -12.75
f 2.375

2 a 135
b -28.5
c -11.25
d 104
e 18

5 a $8 / 3$
b $70 / 3$
c $5 / 72$
d $38 / 3$
e - $7153 / 256$
f 7.5
g $\quad 124 / 9$
h 175/648
i 0.75

3 a $8 / 3$
b $7 / 576$
c -1.3125
d 38
e 4
$7 k=0.5$
$k=1$
$9-7$

Questions

2 Evaluate these integrals.
a $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 3 \cos \left(x-\frac{\pi}{6}\right) d x$
b $\int_{0}^{\frac{\pi}{4}} 6 \sin \left(x+\frac{\pi}{4}\right) d x$
c $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 8 \cos x d x$
d $\int_{0}^{\frac{\pi}{6}} 3 \cos 2 x d x$
e $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin 3 x d x$
f $\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \cos \frac{1}{2} x d x$

3 Evaluate these integrals.
d $\int_{\frac{\pi}{12}}^{\pi} 4 \sin (3 x-\pi) d x$
e $\int_{-\frac{5 \pi}{3}}^{-\frac{\pi}{3}} \cos \frac{1}{2} x d x$
f $\int_{-\pi}^{\pi} \sin \frac{2}{3} x d x$

4 Evaluate these integrals, giving your answers to 2 decimal places.
a $\int_{1}^{5} 2 \sin x d x$
b $\int_{2.3}^{3.6}-4 \cos x d x$
c $\int_{2}^{4} \sin (4 x-1) d x$
d $\int_{-1.2}^{3.4} \frac{2}{3} \cos (2-x) d x$
e $\int_{3}^{5} \cos \left(2 x-\frac{\pi}{2}\right)+3 d x \quad$ f $\int_{-1.3}^{0.5} 4$
$<2 \pi$, for which $\int_{\frac{\pi}{6}}^{t} 3 \cos x d x=\frac{3 \sqrt{2}}{2}-\frac{3}{2}$.
5 Find the values of $t, 0 \leq t<2 \pi$, for which $\int_{\frac{\pi}{6}}^{t} 3 \cos x d x=\frac{3 \sqrt{2}}{2}-\frac{3}{2}$.
6 Find the values of $p, 0 \leq p<\pi$, for which $\int_{0}^{p} \sin 2 x d x=\frac{1}{4}$.

Answers

$$
\begin{array}{llllll}
\mathbf{2} & \mathbf{a} & \frac{3}{2} & \mathbf{4} & \mathbf{a} & 0.51 \\
& \mathbf{b} & 3 \sqrt{2} & & \mathbf{b} & 4.75 \\
& \mathbf{c} & 4 & & \mathbf{c} & 0.38 \\
& \mathbf{d} & \frac{3 \sqrt{3}}{4} & & \mathbf{d} & 0.62 \\
& \mathbf{e} & \frac{1}{3} & & \mathbf{e} & 6.90 \\
& \mathbf{f} & \sqrt{3}-1 & & \mathbf{f} & 7.65 \\
\mathbf{3} & \mathbf{d} & \frac{-2(2+\sqrt{2})}{3} & \mathbf{5} & t=\frac{\pi}{4} \\
& \mathbf{e} & 0 & & t=\frac{3 \pi}{4} \\
& \mathbf{f} & 0 & \mathbf{6} & p=\frac{\pi}{6} \\
& & & p=\frac{5 \pi}{6}
\end{array}
$$

